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ABSTRACT 
 Photovoltaic (PV) systems are being increasingly 
adopted in buildings, but the installed capacity often fails 
to account for uncertainties during the usage phase. A 
novel probabilistic optimization model based on the 
reliability level is applied to size the PV arrays on a 
residential building. The minimum total installation area 
of the PV panels is treated as the objective of the 
optimization. To consider the impacts of various 
uncertainties during the installation and continuous 
operations of PV system, a design variable, installation 
angle, and multiple environmental variables, including 
annual solar irradiation, ambient temperature, and 
attenuation rate on the system efficiency, are integrated 
into the model. A unique statistic profile of uncertainty is 
established for each of the variables based on the 
verifications from the documented literature. In the 
meantime, to concurrently ensure the sufficient 
electricity supply provided by the PV system and 
mitigating the system degradation, constraints on the 
total power generation, self-use power ratio, and 
temperature increase were formulated. By establishing 
different levels of confidential reliability and magnitudes 
of uncertainties associated with design and random 
variables, the optimized size and installed angle of PV 
exhibited significantly different results. 

Keywords: solar energy, design optimization, reliability, 
probabilistic model, building energy  

NONMENCLATURE 

Abbreviations 
Pr Probability 

 PV Photovoltaic 
Symbols 

A PV installation area, m2 

B Building 
D Design variables 
𝑓, 𝑇 function 
i Time step, hour; or index 
j Variable index 
P Power, kW 
R Reliability 
t Target 
U Variable Space 
X Random variables 
𝜇 Mean value 
𝜎 Standard deviation 
𝛽 Installed angle, ° 
γ Azimuth angle, ° 
η Efficiency 

1. INTRODUCTION
As the urgent call for carbon reduction in mitigating

building energy consumption gains priority, along with 
the advancements in photovoltaic (PV) technology, PV is 
considered a crucial solution to future energy challenges 
[1-3]. Concurrently, more and more buildings are 
choosing to install PV systems. This is due to their 
proximity to places of energy consumption and the 
suitability of building rooftops for such installations. 
Therefore, the optimal sizing of solar PV systems is a 
crucial task, which requires careful consideration of 
various technical, economic, and environmental factors 
to ensure their effective integration within the energy 
landscape. Oversizing the system can lead to excessive 
investment and underutilization of resources [4,5], while 
undersized array can result in unsatisfied energy 
demands. As documented in many existing studies [6,7], 
fluctuations in annual solar irradiation, errors made 
during installation, the attenuation of component 
efficiency, etc. may largely affect the total power 
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generation of the PV array. However, rare current 
studies addressed the uncertainties due to time change 
or construction errors of these variables during the 
optimization process [8,9], especially when it comes to 
the integration of building electricity energy profile and 
random disturbances from ambient environment in 
addition to weather conditions. In a sophisticated sizing 
process of PV array, it is necessary to consider the 
uncertainties behind the design parameters and ambient 
site parameters that may affect the performance of the 
PV system. 

To achieve the right balance, the assessment of 
dynamic parameters such as solar irradiance patterns, 
local climatic conditions, building energy consumption 
profiles, etc. is necessary. However, the current design of 
rooftop photovoltaic (PV) system capacity often 
underrates these crucial factors that can impact the 
system’s performance during operation. This study 
proposes an integration of reliability-based design 
optimization (RBDO) method in the design of residential 
solar system. RBDO is widely adopted in the field of 
mechanical design [10-13]. Instead of aiming at a 
deterministic optimization, it considers the real-world 
uncertainties that may impose risks in the device of 
interest performing normal functions. The proposed 
novel optimization model identifies the optimal design 
configurations of roof-mounted PV while assessing the 
reliability of the system under the above-mentioned 
uncertainties from the environment and the design 
process.  

2. RELIABILITY-BASED ANALYSIS

2.1 Optimization algorithms 

As mentioned above, by taking into account the 
uncertainties, the optimization can be achieved with 
higher fidelity and reliability. Similar to a regular 
optimization approach, the objective function, the 
boundary constraints, and the mandatory simulation 
parameters are required to complete the algorithm. In 
this study, the goal of the simulation is to reduce the PV 
investment while maintaining the minimum power 
supply to the building. Therefore, the minimization of the 
required installation area of PV panels is regarded as the 
objective function, which can be calculated by dividing 
the to-be-fulfilled building electricity energy demand by 
the produced power from PV, presented by Eqs. (1) and 
(2).  

𝑓 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐴𝑃𝑉(𝐷, 𝑋) (1) 

𝐴𝑃𝑉 =
𝑆𝑢𝑚(𝑃𝐵)

𝑀𝑒𝑎𝑛(𝑃𝑃𝑉)
(2) 

where D and X denote the arrays for design variables 
(ones that can be varied at design phase) and random 
variables (environmental factors). In the meantime, the 
total demand on the PV productions is set to be 70% of 
the building loads in this study. The constraint function, 
on the other hand, is established based on the ratio of 
produced power to the power demand over a one-year 
simulation span. The alignment of the dynamic profile of 
PV power supply and the building energy profile is 
recognized as a key to measure whether the residential 
PV is effective. In this work, the calculated PV power are 
used to calculate the alignment ratio, which can be 
expressed by Eq (3).  

𝑅𝑎𝑡𝑖𝑜𝑇𝑜𝑡𝑎𝑙 =
1

8760
∑ 𝑃𝑃𝑉(𝑖)

8760

𝑖=1

/𝑀𝑎𝑥(𝑃𝑡𝑜𝑡𝑎𝑙(𝛽)) 

(3) 

where “i” denotes the hourly data point, ranging from 1 
to 8760; Ptotal denotes the totally generated PV power 
which is a function of installation angle. And when 
considering the sole factor, the potentially maximum 
power that can be generated 𝑀𝑎𝑥(𝑃𝑡𝑜𝑡𝑎𝑙(𝛽)) is used 
to measure the percentage of the real generated power 
at the end of the optimization. To ensure the 
effectiveness of PV, PRatio is set to be at least higher than 
a threshold value. Therefore, the constraint function can 
then be formulated as:  

𝑃𝑟(𝑃𝑅𝑎𝑡𝑖𝑜 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 0) = 𝑅𝑡 (4)

where Pr represents the probability of the constraint 
function being satisfied, and Rt represents the target 
reliability. In this case, Rt is set to vary between primarily 
0.80 to 0.85. Thus, when the target reliability is set to be 
85%, the optimization is conducted under the 
prerequisite that the PV can fulfill at least 70% of the 
building electricity demand at an 85% confidential 
reliability level. Furthermore, the other constraint is set 
to be the value of the PV self-generation ratio, which is 
defined by Eq. (5). It is used to ensure that the PV 
generated power can be effectively used by the building 
in real time [14]. There is also a third constraint, which is 
the increase of PV back panel temperature. As widely 
recognized, when the temperature increases, the PV 
efficiency may be significantly affected.  

𝑅𝑎𝑡𝑖𝑜𝑆𝑒𝑙𝑓−𝑢𝑠𝑒 =
1

8760
∑

𝑀𝑖𝑛(𝑃𝑃𝑉(𝑖), 𝑃𝐵(𝑖))

𝑃𝐵(𝑖)

8760

𝑖=1

(5) 

By using First Order Reliability Method (FORM), the 
variables indexed with probability distribution are firstly 
transformed into the Euclidean space, becoming the 
standard distribution variables.  
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𝑈𝑖 = 𝑇(𝐷𝑖&𝑋𝑖) =
𝐷𝑖&𝑋𝑖−𝜇𝐷𝑖&𝑋𝑖

𝜎𝐷𝑖&𝑋𝑖

(6) 

The searching gradient of the algorithm can be then 
computed based on the impacts of design variables on 
the objective function. The searching point can then be 
updated in the next iteration.  

𝜕𝛽𝑖

𝜕𝐷𝑗
=

𝜕(𝑈𝑇𝑈)1/2

𝜕𝐷𝑗
|𝑈 = 𝑢 ∗𝐺𝑗(𝑈)=0

=
𝑈𝑇

𝛽𝑖

𝜕𝑈

𝜕𝐷𝑗
|𝑈 = 𝑢 ∗𝐺𝑗(𝑈)=0

(7) 

2.2 Model configurations 

The building simulation is carried out in Trace3DPlus 
[15] using a high-rise apartment construction. In this
specific study, the uncertainties are involved in multiple
parameters including inclination angle of the installed PV
panels, solar azimuth angle, the intensity fluctuations in
the solar irradiation, variations in the ambient
temperature, and the actual electricity conversion
efficiency of the panels. Note that among these factors,
the panels’ inclination angle is treated as design variable
since it can be adjusted by the designers, while the
remaining ones are treated as random variables, which
are not under manual control despite their non-
negligible impacts on the ultimate performance of the PV
system. In a typical RBDO algorithm, a probabilistic index
is used to represent the distribution of values for each
concerned variable. In this study, normal distribution is
used for all design and random variables. The mean
values and standard deviations, accompanied with the
lower and upper bonds for design variable are shown in
Table 1.

Fig. 2 Simulation flowchart using RBDO on optimizing 
the PV sizing parameters [10]. 

Take angle of installation, 𝛽, and efficiency 
coefficient, Coef-η, as two examples, the first guessed 
value for 𝛽 is 45° and it is the only design variable that 
needs to be optimized. The range of its potential value 
varies from -90° to 90°. The uncertainty in the installation 
process itself is exhibited as a standard normal 
distribution with a standard deviation (STD) of 2°. 
Similarly, Coef-η is also treated as a probabilistic variable 
that has a mean value of 18% and 1% STD during the 
optimization process.  

Table 1. Parameter configurations in RBDO (baseline).

Design Variable D & 
Random Variable X 

Initial 
Guess 

Mean Values/Lower 
and Upper Bounds 

Standard 
Deviations 

𝛽 45° (-90°,90°) 2° 

γ 335° 335° 2° 

Coef-R 1.0 1.0 0.1 

Coef-T 1.0 1.0 0.1 

Coef-η 0.18 0.18 0.1 

2.3 Details on model constraints 

To regulate the optimization, unlike deterministic 
process, RBDO uses the combination of constraint 
functions, probabilistic variable indices, and the 
confidential reliability level to achieve an ultimate 
optimization that can balance the objective and the 
uncertain risks in the system. As mentioned above, in this 
study, three constraints were applied to ensure the PV 
system operates in an economic and sustainable way. 
The first constraint is defined as that the overall ratio of 
total PV-generated power over building electrical 
demand, as expressed in Eq.4, should not be lower than 
60%. The second constraint is defined as that the self-use 
ratio, which is the ratio of effective part of the generated 
power over the transient building demand at the same 
time (Eq.5), should not be lower than 50%. The third 
constraint is that the increase of back panel 
temperature, which may lead to system deterioration, 
should be below 19°C. Note that the temperature setting 
here aims to show an example of how the constraint of 
panel temperature influence the design optimization. 
The three constraints aim to regulate optimization and 
avoid extreme design that leads to either less effective 
solar absorption or excessively high temperature.  

Cost Analysis

Optimal Design

D*,X* 

Yes

i=i+1

No

Design

Optim.

Loop

Starting Point 

D(0), X(0)

Constraint 

Analysis

Design 

Optimization

Converged?

Reliability Analysis 

with PMA Method
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Estimation

Threshold on overall power 

ratio, self-use ratio and 

temperature increase
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3. OPTIMIZATION RESULTS
Fig. 2 presents the residuals for the three constraints—
overall power ratio, self-use ratio, and increase of back
panel temperature under the 80% reliability and baseline
scenario. The variations of these residuals are plotted
over the iterations. Note that all constraints’ residuals
converge steadily to negative values, which indicates the
effectiveness of the optimization. To be more specific,
the overall power ratio ultimately reaches 74.1% at the
end of optimization, which is higher than the threshold,
60%. The self-use ratio reaches 61.2%, and the increase
of panel temperature is controlled exactly at the
threshold, 19°C. Note that when conducting a
deterministic optimization, the temperature increase
may be easily elevated beyond such tolerance and
potentially lead to component degradation.

Fig. 2 Residuals of constraints and optimization of 
installed area of PV over simulation iterations when 

reliability is set to be 80% in the baseline case. 

The objective, installed area of PV panels, also shows 
a fluctuation during the first few iterations, which 
indicates that the solver is seeking for a design point that 
can concurrently and sufficiently satisfy the three 
constraints, which lead to more conservative design 
configurations, therefore at the second iteration, the 
area increases to be 9723.3 m2. However, when the 
optimization is complete, the area is minimized to 9684.7 
m2. The optimal installed angle, in this scenario, turns out 
to be 51.35°. It apparently deviates from the 
deterministically optimized value, which is 22°. However, 

when establishing the temperature constraint and 
system reliability, the algorithm takes into account the 
uncertainties associated with the random variables and 
thus alters the optimization results. 

Furthermore, to compare how different reliability 
levels and magnitudes of uncertainties associate with 
variables’ standard deviations, aside from baseline, an 
additional case is created using high uncertainties. As 
mentioned earlier, Tab.1 presents the uncertainty 
configurations in the baseline case, while in the high 
uncertainty case, all the STDs are doubled. In the 
meantime, when considering no uncertainty, the results 
from deterministic scenario are also presented for 
comparison. As demonstrated by Tab.2, when coupling 
60%, 70%, and 80% reliability with the three scenarios, 
the optimized results are completely different. As one 
can observe, when high uncertainty exists in key 
parameters such as solar irradiation profile and ambient 
temperature, when optimizing under the 80% reliability, 
compared to B-60%, the optimal angle is increased from 
38.3° to 61.9° to avoid excessive temperature increase. 
The installed area exhibits a significant increase of 10.6% 
from 9257.5 m2 to 10238 m2. If compared to the 
deterministic case (8964.2 m2), the increase in the 
installed area reaches up to 14.2%. The overall power 
ratio at the end of optimization shows a trend of decline 
when reliability increases.   

Table 2. Optimization results that are based on different 
reliability levels (60% to 80%) for the deterministic case 
(A), the baseline case (B), and the high-uncertainty (H) 
case. 

Cases 
Installation 

Angle 

Installed Area 

(m2) 

Overall 
ratio 

A 22° 8964.6 0.885 

B-60% 38.3° 9257.5 0.832 

B-70% 45.5° 9454.3 0.789 

B-80% 51.4° 9684.7 0.741 

H-60% 45.2° 9441.6 0.792 

H-70% 54.4° 9836.9 0.710 

H-80% 61.9° 10238 0.629 
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A comparison is also made between the small variations 
and large variations in the reliability levels. Fig.3 shows 
the changes in five parameters—four variables and one 
objective—under the variation of reliability at different 
intervals. The results, on the other hand, show similarity 
to that was observed earlier. When reliability increases, 
the installed angle is elevated, and the installed area is 
increased. However, this results in the reduction of 
overall power ratio and self-use ratio, with the 
temperature constraints satisfied in all cases.  

 

 
Fig. 3 Parameters in the baseline case with varied 
reliability levels.  
 

4. CONCLUSIONS 
This study proposes a novel optimization method to 

minimize the required installation area of residential PV 
panels, while concurrently considering the uncertainties 
associated with design variable (installed angle) and 
multiple random variables. Under the effect of constraint 
functions, the optimized installed angle and installed 
area show non-negligible differences among different 
scenarios. The main conclusions can be drawn below. 

a) The feasibility of combining the deterministic 
PV sizing model with a reliability-based 
optimization approach is validated with 
convergence reached in all tested scenarios. 

b) The optimized installed area tends to be 
increased by up to 14.2% considering the limit 
in the increase of PV back panel temperature. 

c) The overall power ratio and self-use ratio tend 
to decrease when carrying out the optimization 
under higher reliability and higher 

uncertainties. To be more specific, when 
applying high uncertainties in the design and 
random variables, the overall ratio decreases 
from 88.5% to 62.9%.  

d) By satisfying the temperature constraint, the 
optimized installed angle of PV panels is lifted 
from approximately 22° to over 60° under 
higher uncertainties and reliability.  
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