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ABSTRACT 

 Because natural gas emits less carbon than other 
fossil fuels, it holds promise as a green energy transition 
fuel. However, the overall carbon footprint of natural gas 
is significantly elevated by methane emissions that occur 
during its production and transmission (Cusworth et al. 
2022). Methane “super-emitters,” while comprising only 
about 1% of sites, are responsible for the majority of oil- 
and gas-sourced methane emissions, making their 
detection and mitigation critical in reducing the climate 
impact of natural gas and in meeting national and global 
sustainability goals (Sherwin et al. 2024). Yet, despite 
advancements in detection, significant uncertainties 
remain regarding the size, frequency, and duration 
distributions of methane emissions (e.g., Frankenberg et 
al. 2016, Cusworth et al. 2022, Chen, Sherwin et al. 2022, 
Conrad et al. 2023, Johnson et al. 2023, Sherwin et al. 
2024) underscoring the need for comprehensive 
emissions inventories segmented by basin across the US. 
Airborne surveys are well-suited for collecting data to 
build these comprehensive, basin-level inventories 
because they allow for extensive spatial coverage, and 
have the spatial resolution, and the sensitivity to 
pinpoint individual methane sources. As remote sensing 
technologies enable rapid basin-scale surveys, it is 
imperative to establish scientifically and statistically 
robust standards to generate reliable and actionable 
emissions inventories. 

 
Recent work has shown that differences in airborne 

sampling strategies, detection technologies, and analysis 
can lead to large differences between survey conclusions 
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if not correctly accounted for (Chen et al. 2024). This 
elevates the importance of incorporating proper 
sampling and analysis techniques when designing a 
methane emissions monitoring campaign to produce 
accurate results and facilitate cross-study comparisons. 
In this paper, we describe a survey strategy designed 
using the latest conclusions from the literature to align 
results from different aerial surveys. We identify several 
sampling and analysis principles, including large sample 
sizes, balanced sampling across oil and gas production, 
careful survey area definition, and a unified protocol for 
analysis, to be vital to producing an unbiased estimate of 
basin-scale emissions. We present results from a 
Department of Energy-funded project that deployed this 
survey strategy in two understudied oil and gas-
producing regions in the United States: the Haynesville 
Basin in Texas and Louisiana, and the Woodford Shale in 
the Anadarko Basin in Oklahoma.   
 
Keywords: methane emissions, oil and gas, mitigation 
technologies, survey strategy, cross-comparison 

1. INTRODUCTION 
Over the next 20 years, a projected 6+ billion tons of 

anthropogenic methane emissions will result in up to 
0.5°C of global warming (Szopa et al. 2023). This warming 
potential highlights the urgent need for targeted 
strategies to mitigate these emissions, particularly in the 
oil and gas (O&G) sector, which accounts for about one-
third of these emissions in the United States (Maasakkers 
et al. 2016). Methane “super-emitters” – defined here as 
emissions with instantaneous rates larger than 10 kg/hr 
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– occur only at about 1% of well sites in the O&G sector 
but are responsible for a disproportionate >50% of the 
overall emissions volume (Sherwin et al. 2024). Many of 
these emissions are unintentional, stemming from 

operating conditions such as equipment breakdowns and 
failures (e.g., Rutherford et al. 2021). These fugitive 
emissions can therefore be addressed through repairs 
and improved technologies and practices. However 
these rare emissions must first be located, and their size 
and occurrence frequency characterized.  

 
Consequently, there is a critical need for basin-

specific methane emissions inventories to identify and 
inform efficient leak detection and mitigation strategies 
and provide a basis for developing future survey 
strategy. Recent studies (e.g., Cusworth et al. 2022, 
Chen, Sherwin et al. 2022, Sherwin et al. 2024) have 

demonstrated the importance of capturing the heavy-
tailed (non-Gaussian) distribution of super-emitters for 
informing inventories, which requires scalable remote 
sensing measurements that are of adequate spatial 
resolution to associate emissions with facility-level 
sources. With rapid advancements in methane detection 
technologies and complementary regulation 
incentivizing methane emission mitigation, there is a 
promising opportunity for generating large, basin-scale 
surveys that can inform emission inventories and 
optimize methane emission reduction strategies.  

 
Recent work has shown that differences in airborne 

sampling strategies, detection technologies, and analysis 
protocols can lead to considerable differences between 

survey conclusions if not rigorously accounted for. As 
new remote sensing technologies enable rapid, basin-
scale surveys, it is critical to establish scientifically and 
statistically robust standards to generate reliable and 
actionable emissions inventories. In this paper, we 
synthesize the latest airborne survey strategy 
recommendations from the literature and share results 
from two surveys designed to provide emissions 
inventories for two key O&G basins in the US that will 
help inform optimal methane emission mitigation 
strategies.  

2. METHODS 

2.1 Survey sample size is critical to capture the full 
emissions distribution 

A recent study (Sherwin et al. 2024) combining 
Insight M and Carbon Mapper aerial remote sensing data 
with bottom-up simulations of emissions finds that only 
0.05%-1.44% of sites contribute more than 50% of the 
overall emissions via super-emitter sources across basins 
(Figure 1). Basins with different levels of production 
appear to have varied frequencies of super-emitters, but 
the overall picture is clear: more than 50% of emissions 
are contributed by these large, infrequent sources. 

 

 
Since super-emitters are rare, surveys with smaller 

sample sizes can fail to capture them, which can lead to 
a significant underestimation of total emissions and a 
misrepresentation of the emissions distribution. Figure 2 
highlights the importance of survey sampling using 
results from the Permian basin in the US (Chen, Sherwin 
et al. 2022). Chen et al. performed Monte Carlo 
simulations showing the bias and variance in estimated 
total emissions at different sample sizes by subsampling 
Insight M airborne survey data of 98,000 sites in the New 
Mexico Permian basin. At 100 sites sampled, the median 

 
 

Fig. 2 Median and 95% CI in emissions estimates from 
subsampling 98,000 sites in Chen, Sherwin et al. (2022) 

 
 

Fig. 1 Cumulative fraction of total emissions as a function of 
emission rate per site for two basins from Sherwin et al. 

(2024). 
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of total emissions prediction significantly 
underestimates the emissions (only ~35% of the true 
value) from the full study because it does not adequately 
capture the impact of super-emitters. At 1,000 well-site 
measurements, the median estimate improves to ~80% 
of the full study value, indicating better characterization 
of the distribution's tail, yet it still misses significant 
emissions and exhibits a wide 95% confidence interval 
(30.8% - 215.5% of the true value). At 10,000 sites and 
100,000 sites sampled, the estimate is consistently much 
closer to the full study estimate, demonstrating that 
larger sample sizes are critical to capturing an unbiased 
and precise view of basin-level emissions.  

 
An additional complication in designing methane 

emission survey strategies is that the duration of super-
emitters can vary from minutes to years. Moreover, the 
distribution of these emission durations can vary by 
basin. Current technologies lack the sensitivity and 
scalability to continuously monitor every asset across 
these basins. However, this technological shortcoming 

can be overcome by ergodic sampling, which produces a 
representative distribution by obtaining many 
independent realizations. The result is equivalent to 
measuring the system for an extended period of time 
and overcomes uncertainty resulting from emission 
sources with varying durations.  

 
In light of the challenges of detecting super-emitters 

and understanding their duration, there are several 
important analytical considerations for developing 
emissions estimates using aerial surveys. Figure 3 shows 
a flowchart demonstrating the conditions under which 
large sample-size surveys provide unbiased estimates of 
the overall emissions in a basin even if they are 
conducted at irregular temporal intervals and with 
varying frequency of spatial coverage. In particular, 
intermittency is accounted for by modeling the presence 
or absence of emissions as a Bernoulli process, where the 
probability of active emission at site i is defined as shown 
in the center-left panel of Figure 3. This treatment of 
intermittency will yield unbiased estimates of the 

 
Fig. 3 Airborne surveys with spatiotemporally uneven sampling can yield unbiased estimates of the emissions inventory 

of a basin. The left panel illustrates three possible scenarios for site emissions when surveyed at different times: (1) 
persistent emissions, (2) no emissions, and (3) intermittent emissions. The center panels demonstrate modeling this 

system as a Bernoulli process, outlining the conditions under which airborne surveys can provide unbiased and precise 
total emissions estimates. The right panel shows that Monte Carlo sampling is used in the analysis protocol to quantify 

uncertainties in the emissions estimates. 
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emissions distribution under two conditions: (1) the 
intermittency profile of emissions is stationary over 
space and time at basin-wide scales, and (2) future 
coverage events are not predicated on past emissions 
(center-right panel of Figure 3).  

 
In the case studies presented here, the uncertainty 

in the quantification of methane emissions from the 
surveying instrument and the treatment of intermittency 
are rigorously propagated via Monte Carlo sampling to 
finally create a total emissions estimate with uncertainty 
(e.g., Chen, Sherwin et al. 2022, Johnson et al. 2023, 
Sherwin et al. 2024). To account for the survey 
instrument's partial detection range, each Monte Carlo 
realization identifies undetected emissions within the 
partial detection range by binning emission rates into 
even intervals. The number of undetected emissions in 
the partial detection range is then estimated based on 
independent instrument probability of detection curves, 
and their contribution can be added to the emissions 
inventory.  

2.2 Building a representative survey area  

In addition to collecting measurements from a large 
number of sites, aerial surveys must also be designed 
taking into consideration differences across sites. This 
can be achieved through site stratification. Stratification 
creates groups (“strata”) of sites such that sites within a 
group are similar and groups of sites are different from 
one another. Characteristics such as oil-rich vs gas-rich, 
owner/operator, age, location, site production, and the 
site’s position within the industry (upstream or 
midstream) are important features to consider. Recent 
work (Sherwin et al. 2024) has found quantified methane 
loss rates to vary significantly between different sub-
regions of the Permian basin by almost a factor of two 
when surveying different productivity profiles. 
Stratifying sites (e.g., Johnson et al. 2023, Sherwin et al. 
2024) by these features and sampling sites from each 
group can ensure that the sample is representative of the 
entire basin.   

  

In building the survey strategy for the ongoing DOE 
project, we queried asset data for producing wells in 
addition to monthly production records for those wells 
from Enverus’ well life cycle datasets. We used total 
energy production from these data sets to determine the 
productivity and balance of production mix of the two 
basins and our proposed sample areas. Important 
considerations here are the quality and consistency of 

production data as well as the ability to evaluate oil, gas, 
and total energy productivity for all assets in areas of 
analysis. Enverus’ well life cycle datasets are regularly 
updated, cleaned, and maintained to provide 
standardized information across active basins and plays. 
This standardization allows one to better compare basins 
to sub areas to evaluate the representativeness of 
selected samples. Alternative data sources such as state-
maintained databases can be used to perform similar 
analysis. 

Furthermore, using well-defined spatial definitions 
of basins, shales, or plays and transparently sharing 
these defined areas is critical for allowing alignment and 
consistency across research studies and ensuring that 
the underlying production of assets within those areas is 
carefully considered when comparing total emissions 
estimates across studies. For this reason, we used 
publicly available definitions from the U.S. Energy 
Information Administration (EIA) to define the 
Haynesville and Anadarko Basin boundaries to use for 
defining sample areas. We also used EIA definitions to 
inform our boundary of the Woodford Shale and 
determine sampling areas within it.  

 

 

Within the boundaries defining the sampling region, 
it is important to carefully evaluate asset infrastructure 
data to develop candidate sites for sampling. While there 
is no fully comprehensive dataset of asset infrastructure 
due to reporting limitations, it is important that 
infrastructure datasets utilized cover the study area and 
that they are not biased towards any subset of operators. 
Ideally, whether manually or through third party data 
sources, infrastructure datasets should be pooled from 
all relevant levels of reporting and processed such that 
essential attribute information like operating statuses 

 
 

Fig 4. Planned survey areas production characteristics 
compared to the overall basin for ongoing Insight M airborne 

surveys in Anadarko and Haynesville basins. 
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and productivity are standardized for use in identifying 
relevant infrastructure for sampling. For production 
infrastructure we use Enverus’ well life cycle datasets, 
and for midstream pipelines and facilities we use Hart 
Energy infrastructure data. Both sources and the 
respective datasets from each are standardized and 
maintained regularly with data covering all available 
infrastructure across operators and basins.  

Despite this standardization, some O&G 
infrastructure is less well documented or complete than 
others, particularly midstream facilities. For example 
Sherwin et al. (2024) showed that up to 1/3rd of total 
emissions volume could be attributed to sometimes 
poorly mapped gathering lines. For this reason, it is even 
more imperative to conduct careful and comprehensive 
area-wide sampling to ensure representativeness of 
surveyed infrastructure. Working with near-complete 
basin-level infrastructure datasets, filtered by well-
defined boundaries, and filling in areas between assets 
helps to avoid unintended gaps in sample asset coverage 
which enables better O&G segment classification of 
detected emissions and their representativeness of the 
entire basin. 

3. EARLY RESULTS 

 
Figure 5 shows the areas that have already been 

surveyed in the Haynesville and Anadarko basins as part 
of a three-year DOE-funded collaboration between 
Insight M, MiQ, LBNL, Stanford, and GHGSat. The careful 
survey planning described above is complemented by a 
unified protocol for analysis that is aligned with the 
Veritas approach (GTI Energy 2023). This includes 
analysis of emission duration using data from multiple 
methane emission surveys and reconciliation with 
bottom-up emission estimates. We divide emissions into 
two categories: best measured and best modeled as 

suggested by the Veritas protocol. The prior group 
includes all emissions sources that have rates sufficiently 
large to be detected by the Insight M LeakSurveyor. We 
model emissions too small for our sensor to detect 
through stratified random sampling of site-level 
emissions generated from updated emission factors 
(Rutherford et al. 2021, Zimmerle et al. 2022). We then 
follow a Monte Carlo approach to yield a reconciled total 
emission rate at each site and for the basin as a whole.  

4. DISCUSSION & CONCLUSIONS 
 
In this paper, we demonstrate the importance of 

data-driven survey strategy to create accurate estimates 
of basin-scale methane emissions: 

1. Sample size is key. Spatially comprehensive 
airborne surveys are crucial for creating accurate 
estimates of basin-scale methane emissions by 
adequately capturing the importance of super-
emitters – rare, but important emissions that are 
only effectively accounted for with large sample 
sizes.  

2. We show that under certain conditions, survey 
sampling can be considered an ergodic process, 
which allows independent, discrete observations 
from airborne surveys to make statistically 
robust inferences about the overall emissions 
dynamics despite the high levels of intermittency 
of many oil field methane emissions.  

3. Large, frequent surveys can show bias if the 
geographical and physical characteristics of the 
basin are not adequately considered, especially 
across production variability (e.g., Sherwin et al. 
2024). In the ongoing DOE project to survey two 
understudied basins in the US, we highlighted 
the rigorous data quality and statistical checks 
performed to ensure that the top-down 
estimates that will be derived from this study will 
be robust.  

4. The importance of spatially comprehensive 
surveys is further magnified when considering 
that some O&G infrastructure is poorly mapped 
and can be a large contributor to the overall 
emissions volume. Spatially comprehensive 
surveys help adjust for incomplete asset data, 
while multiple sources of asset data can be 
pooled to improve understanding of covered 
assets. 

5. Moreover, we highlight the need for a unified 
analysis protocol in the reconciliation of top-
down and bottom-up emission inventories.  

 
 

 
 
Fig 5. Early results from Insight M’s ongoing airborne surveys 

in the Haynesville and Anadarko basins 
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In conclusion, airborne surveys with extensive, 

statistically robust sampling, carefully defined spatial 
boundaries, and unified analysis protocols are essential 
for creating accurate emissions inventories across basins, 
which can then inform the most effective methane 
mitigation strategies.  
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