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ABSTRACT

Large scale grid expansion planning studies are essential
to rapidly and efficiently decarbonizing the electricity sector.
These studies help policymakers and grid participants under-
stand which renewable generation, storage, and transmis-
sion assets should be built and where they will be most cost
effective or have the highest emissions impact. However,
these studies are often either too computationally expensive
to run repeatedly or too coarsely modeled to give actionable
decision information. In this study, we present an implicit
gradient descent algorithm to solve expansion planning stud-
ies at scale, i.e., problemswithmany scenarios and large net-
work models. Our algorithm is also interactive: given a base
plan, planners canmodify assumptions and data then quickly
receive an updated plan. This allows the planner to study
expansion outcomes for a wide variety of technology cost,
weather, and electrification assumptions. We demonstrate
the scalability of our tool, solving a case with over a hundred
million variables. Then, we show that using warm starts can
speed up subsequent runs by as much as 100x. We highlight
how this can be used to quickly conduct storage cost uncer-
tainty analysis.

Keywords: electricity grid, decarbonization, expansion
planning, gradient descent, scalability, interactive tools.

1. INTRODUCTION

Electrification of heating, transportation, and industrial
processes is essential to successful decarbonization. This
transformation will increase electric load in the U.S. by up-
wards of 50% [1] and in turn require significant expansion
of electric grid transmission, storage, and generation assets.
Capacity expansion planning studies, which identify high-
quality investment plans in electric grid resources, will there-
fore be key to finding cost-effective paths to decarbonization.
In modern electricity systems, modeling uncertainty is a
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Fig. 1: Workflow for interactive planning studies. The planner
first establishes an initial plan on a large scale, high-fidelity
grid model. Based on initial results, the planner interactively
updates assumptions (e.g., an emissions target or the cost
of transmission upgrades) and quickly receives a new plan,
iteratively repeating this process.

core a part of an effective planning process. Specifically, the
weather dependence of renewable generation introduces
new sources of short-term uncertainty in energy supply. Un-
predictable costs associatedwith new technologies (e.g., grid
scale storage) and rapidly shifting policy targets also create
a great deal of long-term uncertainty about the fundamen-
tal assumptions and inputs used in planning models. In this
environment, planners need tools that are both scalable, to
model many short-term scenarios simultaneously, and inter-
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active, to quickly explore and understand the impact of dif-
ferent assumptions on grid outcomes.
In this work, we consider a general bilevel planning prob-

lem, calledmulti-value expansion planning. This problem, in
general, is nonconvex, so we describe an efficient, scalable
approximate solution method that can be interactively up-
dated post hoc. Our model, described in Section 2.1, is quite
general and allows for jointly planning generation, transmis-
sion, storage for a variety of objectives. Inspired by its re-
markable success in solving complex machine learning prob-
lems, we use stochastic gradient descent, described in Sec-
tion 2.2, to solve multi-value planning problems. This ap-
proach has a simple interpretation: at each iteration, the
planner assesses the current expansion plan and uses sen-
sitivity analysis to slightly adjust improve upon the plan. This
method is scalable to high-fidelity grid models with tens of
millions of variables and constraints and can be interactively
updated, i.e., the planner can change input data or assump-
tions and quickly find a new plan. In Section 3, we test the
performance of our method on a variety of Western U.S.
test cases and demonstrate applications to sensitivity anal-
ysis and exploratory planning. We conclude in Section 4 and
suggest several practical use cases for our method.

1.1 Related Work

Existing expansion planning tools fall primarily into one
of two categories: (1) simplified models of the grid [2, 3,
4] that can be studied for many different scenarios and as-
sumptions, and (2) high-fidelity models [5, 6] that accurately
model grid physics (e.g., DC linearized power flow) but are
too computationally intensive to run repeatedly for differ-
ing assumptions and data. Most models also assume a cen-
tral planner that jointly optimizes operations and invest-
ment to minimize total cost, indirectly incorporating emis-
sions through carbon taxes and caps; accurately modeling
decentralized electricity markets requires a bilevel expansion
planning problem [7, 8] that significantly increases compu-
tational complexity. Finally, planning tools are static by de-
fault, i.e., they produce a single plan that cannot be modi-
fied. Several studies try to address this limitation using sen-
sitivity analysis [9, 10, 11] and by exploring the space of near-
optimal solutions, i.e., modeling to generate alternatives [12,
13, 14]. For a comprehensive review of expansion planning
tools, we refer the reader to Gonzalez-Romero, Wogrin, and
Gómez [8].

2. MATERIALS AND METHODS

2.1 Model

We consider an electricity network parametrized by a
vector η ∈ RK , which includes information about the

constructed generator, transmission, and storage capacity
throughout the network. The multi-value expansion plan-
ning problem is to choose the network capacities tominimize
investment costs plus some function of the operational out-
comes,

minimize γT η + 1
S

∑S
s=1 hs(x

∗
s(η))

subject to ηmin ≤ η ≤ ηmax,
(1)

where the variable is the network parameters η ∈ RK . The
functions hs : RN → R are called the planner’s objec-
tives and may include things such as the total cost of opera-
tion, total grid emissions, or some function of the locational
marginal prices. The function x∗s(η) : RK → RN is called the
dispatch map for scenario s,

x∗s(η) = argmin
x

(
cs(x) s.t. As(η)x ≤ bs(η)

)
, (2)

which models short-term operational decisions under sce-
nario s ∈ {1, . . . , S}. The dispatch map is simply the out-
come of the economic dispatch problem or production cost
model used by the planner. The functions cs : RN → R
model the cost of operations (e.g., fuel cost) for that sce-
nario. Each scenario has M constraints A(η)x ≤ b(η),
where A(η) ∈ RM×N and b(η) ∈ RM are functions of the
electricity network capacities η. For example, if η1 is the ca-
pacity of a generator, then one of the constraints will include
that generator’s power limits, which depend on η1. Individ-
ual scenarios can represent an hour, a day, or even a week
of operations, and each scenario models either (a) a differ-
ent period in time or (b) a different set of assumptions about
future technology costs, load growth, etc.
Problem (1) is a bilevel optimization problem, i.e., an opti-

mization problem that depends on the outcome of another
problem. When hs = cs, multi-value planning can be re-
cast as a joint optimization problem over η and x1, . . . , xS ;
this corresponds to classical expansion planning, which min-
imizes total long-term system cost for a vertically integrated
utility. When hs ̸= cs, we can consider more complex prob-
lems where the planner’s objectives do not necessarily align
with that of a cost-based market clearing mechanism. In this
case, the problem becomes significantly more complex and
requires more sophisticated algorithms to solve. We give an
example of a multi-value problem below.

Emissions-aware planning. In many situations, the plan-
ner (a grid operator or state policy maker) may want to de-
crease emissions through target investment in new transmis-
sion, renewable generation, and storage. However, in the
absence of a sufficient carbon tax, decentralizedmarkets will
always clear on monetary cost. The planner can still reduce
emissions and account for the market-clearing equilibrium
by setting h to include a weighted emissions penalty.
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2.2 Implicit Gradient Descent

Traditionally, solutions to bilevel expansion planning prob-
lems are found by rewriting (1) as a single level problemusing
the optimality conditions of the inner problem. The resulting
problem is a nonconvex quadratic program and is difficult to
solve exactly in a reasonable time. Standard approaches in-
clude applying off-the-shelf non-linear solvers, branch-and-
bound algorithms, and disjunctive reformulations (for inte-
ger problem); see Pozo, Sauma, and Contreras [7], Gonzalez-
Romero, Wogrin, and Gómez [8], and Wogrin, Pineda, and
Tejada-Arango [15] for further details.
We propose forgoing the single level reformulation pro-

pose and instead applying gradient descent directly to (1). At
each iteration i, we compute the gradient of the objective,

∆(i) := γ +
1

S

∑
s

(∂x∗s(η
(i)))T · ∇hs(x

∗(η(i))).

For large problems, we use stochastic estimates of the gradi-
ent by sampling B scenarios and averaging them to further
reduce compute time; in this case, the algorithm is called
stochastic gradient descent. Then, the planner updates the
current network parameters η(i) to

η(i+1) := proj
[ηmin,ηmax]

(
η(i) − α∆(i)

)
,

where the parameterα > 0 is the step size,∇hs : RN → RN
is the gradient of hs, and ∂x∗s : RK → RN×K is the Jacobian
of x∗s(η). Computing the Jacobian of x∗s(η) requires differen-
tiating an argmin operator. We achieve this using the implicit
function theorem [16] on the optimality conditions of (2).
This technique, called implicit differentiation, has been suc-
cessfully used to apply machine learning and optimization to
various physical systems; refer to Blondel et al. [17] and ref-
erences therein for further details. Further details for the
specific application of this approach to multi-value planning
problems can be found in Degleris, El Gamal, and Rajagopal
[18].

Interpretability. Gradient descent has a natural inter-
pretation as sensitivity-based planning. Given the currently
planned network capacities η(i), the planner computes the
sensitivity of different operational outcomes with respect to
the parameters, ∂x∗s(η(i)). The planner uses these sensitiv-
ity to slightly improve the planned network capacities, then
repeats this process iteratively.

Scalability. Although gradient descent is only guaranteed
to converge to a local stationary point, we empirically ob-
serve near-optimal performance in many cases [18]. More-
over, gradient descent scales well to large problems (K, N ,
andM ) with many scenarios (S). Specifically, each iteration
of the algorithm requires solving the dispatch model for ev-
ery scenario s ∈ {1, . . . , S} and computing its dispatch map

Jacobian ∂x∗s(η); this can be parallelized across all S scenar-
ios. However, the number of iterations to converge does not
depend on the size of the problem or the number of scenar-
ios [18]. In practice, the algorithm converges in a few dozen
to a few hundred iterations.

Interactivity. The initial network capacities η(0) can be
chosen a variety of ways: they can be set to the existing net-
work capacities (η(0) = ηmin), set heuristically, or set using
the outcome of a previous planning study. As we will see in
Section 3.2, the third approach, called warm starting, signif-
icantly reduces the solve time and enables interactive plan-
ning studies, in which the planner decides on an initial plan,
then incrementally tweaks the plan based on past results.

3. RESULTS
In this section, we first demonstrate the need for high-

fidelity grid models by showing that naive scenario selection
(e.g., peak day planning) underperforms when evaluating on
a full year of data. We then show that warm starts can be
used to accelerate gradient descent by asmuch as 100x, con-
verging in just a few dozen iterations. Finally, we use warm
starts to rapidly explore planning outcomes for different bat-
tery storage costs.
We implement implicit gradient descent in Python for

generic multi-value planning problems using cvxpy [19]
and Mosek [20] to solve the dispatch model x∗s(η) and Py-
Torch [21] to differentiate hs. We develop a custom, modu-
lar modeling system for computing the Jacobian ∂x∗s(η) via
the implicit function theorem that is simple to extend to dif-
ferent grid devices.
All our experiments use the PyPSA-USAWestern Intercon-

nect dataset [22]. Specifically, we configure cases of varying
sizes (100 to 500 nodes) and use 2019 weather data coupled
with 2050 forecasts for load and technology costs to produce
8760 hours of data from NREL [1]. We solve the emissions-
aware planning problems described in Section 2.1 with vary-
ing carbon weights, jointly planning generation, storage, AC
line, and DC line capacities. We treat each day (with 24
hourly time periods) as an independent scenario, allowing
us to study problems with between 1 and 365 scenarios. We
run all experiments on a single AMD EPYC 7763 processor
with 64 cores (128 threads) at NERSC.

3.1 Scalability

We first study the scalability of our method and demon-
strate that high-fidelity models find better quality solutions
than their approximate counterparts. Specifically, we solve
twomulti-value problems with a carbonweight of $200 / ton
CO2: one with 16 key days1 and another with 360 scenarios

1We select the top 4 peak load, peak net load, peak renewable, and
lowest renewable days as our 16 key days.
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Fig. 2: Objective values (evaluated on 360 days of data) for
stochastic gradient descent solved on 16 days of data (blue
curve) and 360 days of data (orange curve). Both runs use
a batch size B = 8, take the same time to complete, and
are evaluated on the full 360 days. Sampling from the full
dataset leads to 11.3% reduction in objective value.

(roughly a full year). We run stochastic gradient descent with
a batch size B = 8 on both problems for 500 iterations and
evaluate their performance on the full 360 scenarios every
25 iterations.
Each scenario considers 24 hours of operation for a net-

work with 500 nodes, 1799 generators, 1191 AC lines, 3
HVDC lines, and 576 batteries. We plan the capacity of all
3569 devices simultaneously across all scenarios of hourly
data. If formulated as a joint problem (as is done tradition-
ally), the full optimization problem would have over a hun-
dred million variables and a similar number of constraints.
We plot the 360 scenario objective value at each iteration

for both cases in Fig. 2. Solving the 360 scenario case di-
rectly leads to a 11.6% lower objective value, suggesting that
higher resolution models can help identify more efficient in-
vestments. Critically, both algorithms have the same batch
size and therefore the same runtime, approximately 85 sec-
onds per iteration. About half of this time is spent evaluating
the objective on the full dataset, which canbeperformed less
frequently to save time.

3.2 Warm Start Performance

In this experiment, we analyze how warm starting can be
used to reduce compute time when perturbing problem in-
puts. We consider 16 scenario, 100 node cases for different
carbon weights ranging from $100 to $300 / ton CO2. For
each carbon weight, we solve the problem with two differ-
ent initializations: (cold start) no expansion, i.e., all capaci-
ties are set to their existing values, and (warm start) the so-
lution to the same problem with a carbon weight of $200 /
ton CO2. Each problem is solved using using 500 iterations
stochastic gradient descent with a batch sizeB = 4; a single
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Fig. 3: Warm starts significantly speedup solve times for large
planning problems. (Top) Convergence plots for 500 itera-
tions of stochastic gradient descent applied to a emissions-
aware planning problem with a $150.0 / ton CO2 car-
bon weight. Blue curve: loss when initialized from ”no-
expansion”, which converges in 235 iterations. Orange curve:
loss when warm started from the solution to a similar prob-
lemwith carbon weight $200.0 / ton CO2, which converges in
just 21 iterations. (Bottom) Speedup achieved by warm start-
ing as a function of the size of the perturbation to the carbon
weight. For small perturbations, warm starting leads to up-
wards of a 100x speedup.

iteration takes 6 to 10 seconds. To compare the cold start
and warm start solutions, we say each algorithm converges
when its loss is within 2% of the best cold start loss.
Results are displayed in Fig. 3. We first show the loss plots

for the carbon weight of $150 / ton CO2. Despite themodest
(25%) perturbation to the carbon weight, the warm start run
still converges more than 10x faster than the cold start run.
Next, wemeasure the speedup (warm start iterations divided
by cold start iterations) for different perturbation sizes. On
average, warm starts lead to a 63.3x speedup, with upwards
of a 100x speedup for small perturbation sizes.
In practical terms, this means a planning study that might

normally take about 30 minutes (250 iterations) when run
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Fig. 4: Warm starting enables rapid exploration of potential expansions under different battery cost assumptions. (Blue
bars) Initial capacity of each asset before expansion. (Orange, green, and red bars) Expanded capacity of each asset battery
capital costs are 50%, 100%, and 200%, respectively, of NREL ATB [1] forecasts. Optimal investment in transmission and
generation capacity are stable across different battery cost assumptions; optimal investment in battery storage depends on
assumed technology costs.

from scratch might only take 30 seconds (5 iterations) to up-
date to for new parameters and input data. This could al-
low planners to interactively explore how proposed plans
changed under different assumptions and inputs.

3.3 Analyzing Battery Cost Assumptions

Using the same configuration as Section 3.2, with a car-
bon weight of $200 / ton CO2, we use warm starts to rapidly
explore planning results for 20 different values assumed bat-
tery investment costs between 10% and 200% of the NREL
ATB forecast. We display the resulting expansions for three
different assumptions on battery investment cost in Fig. 4.
As expected intuitively, battery expansion decreases signif-
icantly as a function of battery investment cost. However,
we find that investment in all other grid assets essentially
does not vary for different battery costs. During an inter-
active study, a planner could use information like this to de-
termine minimal regret investments in transmission in gen-
eration; regardless of the ultimate cost of battery storage,
a similar amount of transmission and renewable generation
will be needed.

4. CONCLUSION

In this work, we describe a scalable, interactive algorithm
for complex expansion planning problems. Our algorithm,
which applies gradient descent to the planning problem us-
ing implicit differentiation, can solve high-fidelity grid expan-
sion planning problems in reasonable amounts of time. The
algorithm can also leverage warm starts to rapidly modify an
existing plan to new data and assumptions, and has a simple

interpretation as iterative sensitivity analysis.
We believe our tool could be of great interest to grid plan-

ners and policy makers who could use such a tool to interac-
tively explore future expansion plans for different assump-
tions, goals, and data on high-fidelity grid models. For exam-
ple, policy makers could explore the implications of differ-
ent tax levels or emissions targets without forgoing complex
constraints like generator ramping limits or linearized power
flow, and planners could investigate the impact of climate
and electrification assumptions on capacity requirements.
Tools like this could be critical in designing coherent, robust,
and cost effective plans for upgrading electricity systems.
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