
 
 

Intelligent Optimization Method for CCUS Injection Parameters Based on 
Improved NSGA-II Algorithm 

 
 

Honghong Li1*, Yanan Zhang1, Bing Chen1, Songyan Sang1, Hongzhi Han1, Miao Liu1 

1 Kunlun Digital Technology Co, Ltd., Dongcheng, Beijing, 100020 

(*Corresponding Author: lihonghong01@cnpc.com.cn) 
 

 

ABSTRACT 
 In CO2 enhanced oil recovery (EOR) and sequestration 

operations, the temperature and pressure of 
bottomhole fluids play a crucial role in determining CO2’s 
oil solubility and mobility. To achieve optimal EOR and 
sequestration results, it is essential to design parameters 
such as injection temperature, pressure, wellbore 
structure, and insulation materials. To address the issues 
in designing CCUS injection parameters, this paper 
proposes a multi-objective intelligent optimization 
method for CCUS injection parameters based on an 
improved second-generation Non-dominated Sorting 
Genetic Algorithm (NSGA-II). First, a CO2 injection 
wellbore temperature and pressure calculation model is 
constructed, enabling the characterization of fluid flow 
along the wellbore and the simulation of bottomhole 
temperature and pressure. Subsequently, by introducing 
an Estimation of Distribution Algorithm (EDA), the 
randomness and lack of purpose in the crossover and 
mutation operations of the traditional NSGA-II algorithm 
are mitigated, thereby enhancing the optimization 
performance and convergence speed of the algorithm. 
Finally, through case analysis, the effectiveness and 
superiority of this intelligent optimization method in 
designing CCUS injection parameters are validated. 
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NONMENCLATURE 

Abbreviations  

CCUS 
Carbon Dioxide Capture, Utilization, 
and Storage 

EOR Enhanced Oil Recovery 

NSGA-II 
Second-generation Non-dominated 
Sorting Genetic Algorithm 

EDA Estimation of Distribution Algorithm 

UMDA 
DistributionMarginalUnivariate

Algorithm 

Symbols  

d𝑄 
Heat absorption of the infinitesimal 
segment, W 

d𝑄1 
Radial heat flux of the infinitesimal 
element in the wellbore, W 

d𝑄2 

Radial heat flux at the interface 
between the cement sheath and the 
formation, W 

𝑑𝑝 
Fluid pressure in the infinitesimal 
segment of the wellbore, Pa 

𝑑𝑇 Increased temperature of CO₂, K 
𝑇𝑓 Temperature of CO₂ at a certain depth 

𝑇ℎ 

Temperature at the interface 
between the cement sheath and the 
formation at a certain depth, K 

𝑇𝑒 Formation temperature, K 
M Mass flow rate of CO₂, kg/s 
𝐶p Specific heat capacity of CO₂, J/(kg·K) 

𝑈to 

Overall heat transfer coefficient of 
the infinitesimal element in the 
wellbore, W/(m²·K) 

𝑟to Outer diameter of the tubing, m 
𝑟𝑡𝑖 Inner diameter of the tubing, m 
𝑟𝑤 Radius of the wellbore, m 

𝜆e 
theofThermal conductivity

formation, m²/s 

𝛼e 
Thermal diffusivity of the formation , 
m²/s 

g Gravitational acceleration, m/s2 
𝜌 Density of CO₂, kg/m³ 

𝑣 
Flow velocity of CO₂ fluid in the 
infinitesimal segment, m/s 

𝜀 Average roughness of the tubing, m 
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t Production time, s 
𝜃 Well deviation angle, ° 

𝑓 
Friction factor of the tubing at a 
certain depth, Dimensionless 

𝑃𝑤𝑓 Target bottom-hole pressure, MPa 

𝑃𝑤𝑓
′  

bottomCalculated - pressure,hole  
MPa 

𝑇𝑤𝑓 Target bottom-hole temperature, K 

𝑇𝑤𝑓
′  

Calculated bottom-hole temperature, 
K 

𝑃𝑖𝑛 Injection pressure of CO₂, MPa 
𝑇𝑖𝑛 Injection temperature of CO₂, K 
𝑄𝑖𝑛 Injection rate of CO₂, t/d 

 

1. INTRODUCTION 
In the context of the relentless growth of global 

energy demand and the increasingly severe challenges of 
climate change, identifying solutions that meet the dual 
criteria of ensuring energy supply security and reducing 
greenhouse gas emissions is of paramount 
importance[1]. The technology of CO2 Capture, 
Utilization, and Storage for Enhanced Oil Recovery 
(CCUS-EOR) has gradually emerged as a vital 
technological approach to combat climate change, 
ensure energy security, and promote a green and low-
carbon transition[2,3]. 

The main components involved in CCUS-EOR 
technology encompass carbon capture, transportation, 
utilization, and storage. Optimization of injection 
parameters plays a central role in this technology, being 
crucial not only for enhancing oil recovery efficiency but 
also for improving the efficiency of CO2 storage and 
ensuring the safety of the storage. Studies have indicated 
that by optimizing the injection conditions to meet 
certain requirements, the recovery rate of crude oil can 
be significantly increased[4]. Moreover, optimizing 
injection parameters such as bottom-hole pressure and 
gas injection rate can markedly affect the amount of CO2 
stored[5]. The injection parameters are crucial for the 
safety of geological CO2 storage; reasonable injection 
rates and timing can effectively control the effective 
stress changes in the reservoir rock, reducing the risk of 
fracturing in the storage formation[6]. Therefore, by 
finely tuning the injection parameters, especially the 
bottom-hole temperature and pressure, one can 
effectively enhance the CO2-enhanced oil recovery and 
geological storage effects while ensuring the safety of 
CO2 storage. 

In earlier methods, the pressure and temperature of 
the injection well were calculated separately, which had 

a certain impact on the accuracy of the bottom-hole flow 
temperature and pressure state calculation[7,8]. Liu et 
al. took into account the phase changes of CO2 in the 
wellbore, using the Peng-Robinson equation of state to 
establish a more accurate coupled calculation model for 
wellbore temperature and pressure[9]; Dou et al. 
conducted research on the distribution of temperature 
and pressure in the wellbore during CO2 injection, using 
the Span-Wagner equation of state based on Helmholtz 
free energy to establish a coupled calculation model, and 
also analyzed the impact of injection temperature, 
pressure, velocity, and time on the bottom-hole 
temperature and pressure, emphasizing the sensitivity 
analysis of injection parameters[10]. Zhang et al. further 
studied the distribution of temperature and pressure in 
the wellbore during CO2 injection, and the model not 
only predicted the wellbore temperature and pressure 
but also could be used for temperature and pressure 
prediction during the drilling and fracturing process with 
supercritical CO2, emphasizing the significant impact of 
injection temperature and pressure on the bottom-hole 
temperature and pressure[11]. These studies have 
promoted the accuracy of the wellbore temperature and 
pressure model for CO2 injection wells and the 
development of optimized injection parameters. 

At present, the main method for optimizing CCUS 
injection parameters is numerical simulation. Numerical 
simulation methods optimize the injection parameters 
by establishing models for the wellbore, considering the 
phase changes of CO2 in the wellbore and the impact of 
different injection parameters on the temperature and 
pressure profiles[12,13]. Ding et al. proposed an 
automatic optimization method for the CO2 flooding and 
storage process based on low-permeability reservoirs, 
taking a typical well group in a low-permeability reservoir 
in Northern Shaanxi as a case study to explore the 
sensitivity of different injection methods and target 
functions, but it focused more on the optimization of 
injection parameters in the reservoir and did not 
optimize the injection and production parameters in the 
wellbore[4]. Shi et al. proposed an optimization method 
for CO2 injection parameters, using orthogonal search to 
find the optimal wellhead fluid temperature and well 
structure parameters, but this method was inefficient 
and difficult to obtain the optimal parameter 
combination. In view of the limitations of traditional 
optimization methods in dealing with multi-objective 
optimization problems, they cannot achieve efficient and 
accurate global optimization[14]. This paper introduces 
an intelligent optimization method for CCUS injection 
strategy, by establishing a coupled temperature and 
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pressure model of the injection process, achieving flow 
simulation of the wellbore injection process; based on 
the NSGA-II algorithm for intelligent optimization of well 
injection parameters and well structure. By 
automatically optimizing the combination of well 
structure parameters and fluid injection parameters 
according to the given bottom-hole temperature and 
bottom-hole pressure, it not only provides a new idea for 
the optimization of injection parameters in CCUS 
technology but also lays a solid foundation for achieving 
more efficient and economical carbon storage and 
resource management strategies. 

2. REQUIREMENTS OF PAPER STRUCTURE  
Considering the complexity of CO2 fluid flow in the 

wellbore, the assumptions for designing the CO2 
injection well model in this paper are as follows:  

(1) there is no eccentricity in the wellbore, and the 
tubing is well-sealed;  

(2) CO2 flows one-dimensionally in the wellbore, with 
only radial heat transfer considered, and the 
temperature and pressure at all points on the same 
cross-section are equal, with the fluid properties 
remaining constant;  

(3) heat transfer within the wellbore is one-
dimensional and steady-state, while the heat transfer 
from the outer edge of the cement sheath to the 
formation is one-dimensional and unsteady;  

(4) the influence of casing couplings on heat transfer 
is not considered;  

(5) the physical parameters of the formation are 
constant with temperature and depth. 

2.1 Model of the injector temperature and pressure 

2.1.1 Wellbore Temperature Model 

During the CO2 injection process, taking the wellhead 
as the coordinate origin, and considering an incremental 
microelement dz at any depth Z in the wellbore, the heat 
absorbed by the microelement can be expressed as: 

 d𝑄 = 𝑀𝐶pd𝑇 (1) 

Under steady-state heat transfer conditions, the 
heat exchange in the radial direction between the 
wellbore infinitesimal element at any depth Z and the 
surrounding environment is: 

 d𝑄1 = 2𝜋𝑟to𝑈to(𝑇f − 𝑇h)d𝑧 (2) 

For an infinitesimal element of the wellbore at any 
given depth, the radial differential equation for 
unsteady-state heat conduction within the surrounding 
environment is: 

 
∂2𝑇e
∂𝑟2

+
1

𝑟

∂𝑇e
∂𝑟

=
1

𝛼

∂𝑇e
∂𝜏

 (3) 

Using the semi-analytical method proposed by 
Ramey[15] for the solution, and introducing the 
dimensionless heat transfer function 𝑓(𝑡𝐷), the radial 
heat flux at the interface between the cement annulus 
and the formation within the wellbore infinitesimal 
element is given by: 

 d𝑄2 =
2𝜋𝜆e(𝑇h − 𝑇e)d𝑧

𝑓(𝑡𝐷)
 (4) 

According to the principle of energy conservation, 
the heat absorbed by the wellbore infinitesimal element 
at any depth is equal to the radial heat exchange quantity 
and also equal to the radial heat flux at the interface 
between the cement annulus and the formation: 

 d𝑄 = d𝑄1 = d𝑄2 (5) 

Transforming the aforementioned equation yields 
the temperature gradient equation for the fluid within 
the wellbore: 

 
d𝑇f
d𝑧

=
2𝜋𝑟to𝑈to𝜆e

[𝜆e + 𝑟to𝑈to𝑓(𝑡D)]𝑀𝐶p
(𝑇f − 𝑇e) (6) 

2.1.2 Wellbore Pressure Field Model 

Similarly, selecting an infinitesimal element of the 
wellbore at any depth, one can derive from the 
continuity equation of the fluid: 

 𝜌d𝑣 + 𝑣d𝜌 = 0 (7) 

Additionally, the flow of CO2 within the tubing 
satisfies the momentum balance equation: 

 𝑑𝑝 = 𝜌𝑔𝑑𝑧𝑐𝑜𝑠𝜃 +
𝑓𝜌𝑣2

4𝑟𝑡𝑖
𝑑𝑧 − 𝜌𝑣𝑑𝑣 (8) 

In the formula: 𝜌  is the density of CO2, which is 
dependent on temperature and pressure, measured in 
kg/m3; 𝑣 is the flow velocity of the CO2 fluid within the 
infinitesimal segment, measured in m/s. 

By combining the aforementioned equations, one 
can obtain the pressure gradient equation within the 
wellbore: 

 
𝑑𝑝

𝑑𝑧
= 𝜌𝑔𝑐𝑜𝑠⁡ 𝜃 +

𝑓𝜌𝑣2

2𝑑𝑡𝑖
+ 𝜌𝑣

𝑑𝑣

𝑑𝑧
 (9) 

2.2 Riction Factor 



4 

2.2.1 Dimensionless Heat Transfer Coefficient 

The function 𝑓(𝑡D) is a dimensionless heat transfer 
function that varies with time, and the Hasan[21] 
formula, which has a higher accuracy, is selected. 

𝑓(𝑡D) = {
1.1281√𝑡D(1 − 0.3√𝑡D)(𝑡D ⩽ 1.5)

(0.4063 + 0.5ln𝑡D) × (1 + 0.6/𝑡D)(𝑡D > 1.5)
 

 

(10) 

The dimensionless time 𝑡D is calculated as follows. 
 𝑡D = 𝑡𝛼e/𝑟w

2 (11) 

2.2.2 Friction Factor 

The friction factor 𝑓 characterizes the magnitude of 
frictional losses between the CO2 fluid flow in the casing 
and the wall during the calculation process. It is 
calculated according to the formula proposed by 
Wang[22], which is applicable to all ranges of Reynolds 
numbers, as shown in Table 1.  

2.2.3 CO2 Physical Properties 

In current research for calculating the physical 
properties of CO2, methods such as the Pen-Robinson 
equation[16], the Soave-Redlich-Kwong equation of 
state[17], the Span-Wagner model[18], the Vesovic 

model[19], and the Fenghour equation[20] are 
commonly used. After an optimization process 
comparing different calculation methods for physical 
properties, the author has established a CO2 property 
calculation model for the injection well, as shown in 
Table 1. 

2.3 Objective Functions and Constraints 

2.3.1 Optimization Objectives 

The optimization objectives for CO2 injection 
parameters focus on two aspects: the difference 
between the actual and target bottom-hole 
temperatures, and the difference between the actual 
and target bottom-hole pressures. Based on the CO2 
injection well model designed in this paper, it enables the 
calculation of temperature, pressure, and phase state 
along the wellbore. Subsequently, by comparing the 
differences between the bottom-hole temperature and 
pressure with the target values, the optimization 
objectives of this paper are as follows: 

 {
𝑚𝑖𝑛𝑓1 = |𝑃𝑤𝑓 − 𝑃𝑤𝑓

′ |

𝑚𝑖𝑛𝑓2 = |𝑇𝑤𝑓 − 𝑇𝑤𝑓
′ |

 (12) 

Table 2. CO2 property calculation model for injection well 

No. Parameters Calculation Formulas 

1 CO2 Density[18] 
𝑀 ⋅ 𝑝(𝛿, 𝜏)

𝜌𝑅𝑇
= 1 + 𝛿𝜙𝛿

′  

2 CO2 Viscosity[20] 𝜂0(𝑇) =
1.00697𝑇1/2

𝐺𝜂
∗(𝑇∗)

 

3 
Specific Heat 
Capacity[18] 

𝐶𝑃(𝛿, 𝜏) = 𝑅[−𝜏
2(Φ𝜏𝜏

𝑜 +Φ𝜏𝜏
𝑟 ) +

(1 + 𝛿Φ𝛿
𝑟 − 𝛿𝜏Φ𝛿𝜏

𝑟 )2

1 + 2𝛿Φ𝛿
𝑟 + 𝛿2Φ𝛿𝛿

𝑟 ] 

4 
Joule-Thomson 
Coefficient[18] 

𝐽(𝛿, 𝜏) =
1

𝑅𝜌
[

−(𝛿Φ𝛿
𝑟 + 𝛿2Φ𝛿𝛿

𝑟 + 𝛿𝜏Φ𝛿𝜏
𝑟 )

(1 + 𝛿Φ𝛿
𝑟 − 𝛿𝜏Φ𝛿𝜏

𝑟 )
2
− 𝜏2(Φ𝜏𝜏

𝑜 +Φ𝜏𝜏
𝑟 )

∗ (1 + 2𝛿Φ𝛿
𝑟 + 𝛿2Φ𝛿𝛿

𝑟 )

] 

5 
Thermal 

Conductivity[19] 
0 c( , ) ( ) ( ) ( , )T T T      = + +  

 

 

Table1. Friction Factor calculation model in different Reynolds numbers 

Reynolds numbers Calculation Formulas 

<2300 𝑓 =
64

𝑅𝑒
 

2300~3400 𝑓 = 0.06539 × exp [− (
𝑅𝑒 − 3516

1248
)
2

] 

3400~2×106 
1

√𝑓
= −2.34 × lg⁡{

𝜀

1.72𝑑ti
−
9.26

𝑅𝑒
× lg [(

𝜀

29.36
)0.95] + (

18.35

𝑅𝑒
)
1.108

} 
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2.3.2 Constraints 

In this paper, the parameters to be optimized include 
constraints on injection parameters and well structure 
parameters. In terms of injection parameters, the main 
aspects include the injection pressure Pin, injection 
temperature Tin, and injection rate Qin of CO2, among 
other injection parameters, which need to meet the 
actual conditions of the oilfield site. 

 {

𝑃𝑚𝑖𝑛 < 𝑃𝑖𝑛 < 𝑃𝑚𝑎𝑥
𝑇𝑚𝑖𝑛 < 𝑇𝑖𝑛 < 𝑇𝑚𝑎𝑥
𝑄𝑚𝑖𝑛 < 𝑄𝑖𝑛 < 𝑄𝑚𝑎𝑥

 (13) 

In terms of well structure materials, the main aspects 
include the type of tubing used, whether to use 
conventional oil pipes or insulated oil pipes. The 
constraints are as follows: 

 𝑇𝑡𝑦𝑝𝑒 = {
0, 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙⁡𝑜𝑖𝑙⁡𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒
1, 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑⁡𝑜𝑖𝑙⁡𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒

 (14) 

3. AN EDA-NSGA-II BASED OPTIMIZATION MODEL 
FOR CO2 INJECTION PARAMETERS 

3.1 The NSGA-II Algorithm 

To derive the optimal CO2 injection parameters that 
achieve the best bottom-hole temperature and pressure 
effects, the NSGA-II algorithm is employed to optimize 
the injection parameters. The NSGA-II algorithm is widely 
used for solving multi-objective optimization problems 
[24]. Based on the original NSGA algorithm, it introduces 
fast non-dominated sorting to rank individuals in the 
population according to their fitness function values. It 
also uses a crowding distance algorithm to ensure that 
individuals in the population are evenly distributed in the 
solution space, preventing local convergence. 
Additionally, it employs an elitism strategy to retain the 
best individuals in each generation to improve the 
quality of the solution and the stability of the algorithm. 
The main features of the algorithm are as follows. 

3.1.1 Fast Non-Dominated Sorting 

In the NSGA-II algorithm, all individuals are 
sequentially classified into different levels of fronts 
based on the dominance relationship. The front rank of 
an individual reflects the quality of the individual. If the 
two compared individuals have different front ranks, the 
lower the rank number, the more preferred the 
individual is in the selection process. 

3.1.2 Crowding Distance Algorithm 

Calculation of crowding distance. Individuals of the 
same rank need to be further measured by the crowding 
distance indicator. After the dominance rank of each 
individual is determined, the crowding distance must be 

calculated. Among individuals of the same front rank, the 
larger the crowding distance, the more preferred the 
individual is in the non-dominated sorting sequence. The 
formula for calculating crowding distance is as follows: 

 

{
  
 

  
 𝐷(𝑖, 𝑗) =

𝑓𝑗(𝑖 + 1) − 𝑓𝑗(𝑖 − 1)

𝑓𝑗
𝑚𝑎𝑥 − 𝑓𝑗

𝑚𝑖𝑛

𝐷(𝑖) = ∑𝐷(𝑖, 𝑗)

𝑛

𝑗=1

 (15) 

In the formula, 𝐷(𝑖, 𝑗) represents the distance of 

individual i in objective j; 𝑓𝑗
𝑚𝑎𝑥  and 𝑓𝑗

𝑚𝑖𝑛  are the 

maximum and minimum values for objective j, 
respectively; 𝑓𝑗(𝑖 + 1)  and 𝑓𝑗(𝑖 − 1)  are the 

neighboring values adjacent to individual i in objective j; 
𝐷(𝑖) is the crowding distance of individual i, which is the 
sum of the distances of individual i across all objectives. 
The crowding distance of the boundary points in each 
front is set to infinity. 

3.1.3 Elite Preservation Strategy 

In the NSGA-II algorithm, an elitism preservation 
strategy is employed to select outstanding individuals for 
the new generation. This strategy involves merging the 
parent and offspring populations to form a new 
population whose size is twice that of the original 
population. Then, the combined population undergoes 
calculations for front ranking and crowding distance, 
obtaining a ranking of all individuals' quality. According 
to the comparison rules that determine excellence, 
outstanding individuals are sequentially filled into the 
next generation's population until the size of the next 
generation's population returns to the size of the merged 
population before the split. 

3.2 The EDA-NSGA-II Algorithm 

Estimation of Distribution Algorithm (EDA) is a class 
of evolutionary algorithms that generate new solutions 
by statistically learning and modeling the distribution of 
the current population, rather than relying on traditional 
crossover and mutation operations. EDA begins by 
estimating the distribution of superior individuals, 
constructs a probability model, and then generates new 
individuals based on this model. This approach helps to 
maintain good genes while enhancing the algorithm's 
global search capability and convergence speed. NSGA-II 
uses traditional mutation operators to generate 
offspring populations. 

The allocation of parameters, such as replacement 
rate, crossover rate, and mutation rate, determines the 
final performance of the algorithm. For inexperienced 
users, setting the appropriate parameters is not easy. 
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Moreover, neglecting the relationships between 
variables within individuals can lead to aimlessness in 
searching for optimal individuals. Therefore, we employ 
the EDA algorithm to improve the NSGA-II algorithm. 

The procedural steps delineated from step 1 through 
step 5 represent the conventional operational 
mechanisms inherent to the NSGA-II framework. Post 
the culmination of step 5, an ensemble of elite 
individuals, denoted as 𝐷𝑢, is meticulously curated. This 
selection is predicated on their exceptional fitness 
metrics coupled with their contribution to the diversity 
of the population, thereby forming an apt learning 
dataset for the subsequent EDA phase. The EDA then 
engenders a probabilistic model that encapsulates the 
collective behavior of these distinguished individuals. 

A joint probability distribution 𝑃𝑢(X)  for X =
(x1, . . . , x|ζ|) is induced. Here we use the algorithm 
UMDA (univariate marginal distribution algorithm) to 
construct probabilistic model. The joint probability 
distribution 𝑃𝑢(X) is induced by: 

( ) ( )
( ) 


=

= =

=

= = =


 

∣

∣
| | | |

1

1 1

( )

M

j i i u
j

u u u u i
i i

x a D

p X p X D p x
M

 

(16) 

In the formula, 𝑎𝑖  is the value of the ith bit, which 
equals one or zero. 𝑀  is the number of individuals 
included in the 𝐷𝑢 . After the joint probability 
distribution 𝑃𝑢(X)  is available, offspring 𝑂𝑢  with 𝑄 
individuals is generated by randomly sampling with the 

joint probability 𝑃𝑢(X) . Finally according to crowded 
tournament selection, select best 𝑄 individuals as next 
population from the combination of 𝑃𝑂𝑢 and 𝑂𝑢. 

4. EXPERIMENTS AND ANALYSIS 

4.1 Case Study of CO2 Injection Well 

In order to validate the effectiveness of the injection 
well model and the optimization model, the temperature 
and pressure measurement data from an injection well 
in a certain oilfield in Jiangsu are used as the verification 
data for the injection well model, followed by the 
optimization work of CO2 injection parameters. 

Following the analysis of the CO2 injection well 
temperature and pressure calculation model established 
in this paper, it can be observed that the model has a 
high degree of accuracy, with calculated results closely 

 
Fig. 1. EDA-NSGA-II algorithm flowchart 

Table 3. Basic parameters of the injection well 

Parameter Value 

Well Depth, m  3100 

Tubing Inner Diameter, mm  62 

Tubing Outer Diameter, mm  73 

Casing Inner Diameter, mm  124.37 

Casing Outer Diameter, mm  137 

Injection Pressure, MPa  30 

Injection Temperature, K  293.15 

Surface Temperature, K  288.15 

Geothermal Gradien, K/m 0.03 

Gas Injection Rate, t/d 55.4 

 

 
(a)                      (b) 

Fig. 2. CO2 injection wellbore temperature and pressure 
profiles(a)Wellbore temperature profile(b)Wellbore 

pressure profile 
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matching the actual field-collected data. The relative 
errors are minimal. At the nine test points within the 
wellbore, the relative error between the actual pressure 
and the calculated pressure is 1.94%, and the error in the 
actual temperature compared to the calculated 
temperature is 0.46%.  

4.2 Analysis of Parameter Optimization Results 

To validate the capability of the EDA-NSGA-II 
algorithm in optimizing injection well parameters, the 
target bottom-hole temperature is set at 373K, and the 
bottom-hole pressure is set at 50MPa. The algorithm's 
population size 𝑄  is set to 50, and the maximum 
number of iterations 𝑖𝑚𝑎𝑥 is set to 200. In the NSGA-II 
algorithm, the crossover probability 𝑅𝑐 is set to 0.8, and 
the mutation probability 𝑅𝑚  is set to 0.1. When 
designing the parameters for the EDA-NSGA-II algorithm, 
it is the same as the NSGA-II algorithm, with 80% of 
individuals generated by the EDA method, and the 
mutation probability is 𝑅𝑚  0.1. The search range for 
optimization is as follows: 

Comparative experiments were conducted for both 
the NSGA-II and EDA-NSGA-II algorithms. Figure 3 
illustrates the Pareto optimal solution sets obtained after 
optimizing the CO2 injection well case under identical 
parameter settings with the two algorithms. It can be 
observed from the figure that, in comparison with the 
NSGA-II algorithm, the EDA-NSGA-II algorithm yields 
solutions of higher quality, with better convergence and 
more uniform distribution. At the same level of 
optimization iteration, when compared with the target 
temperature and pressure values, the EDA-NSGA-II 

algorithm achieves closer bottom-hole temperatures 
and pressures in the injection well. 

Moving forward with a refined analysis of the EDA-
NSGA-II algorithm's optimization process, we start by 
examining the evolution of the Pareto front at different 
generations of the EDA-NSGA-II algorithm, as depicted in 
Figure 4. Initially, individuals of the population are 
scattered throughout the solution space. As the number 
of iterations increases, the Pareto front gradually moves 
towards the direction of the optimal solution set. The 
rapid expansion of the Pareto front in the early iterations 
indicates that the algorithm possesses a swift 
convergence rate. The Pareto front in the final 
generations demonstrates a uniform distribution of 
solutions, indicating a good diversity within the 
population.  

In the analysis of crowding distance, we plotted the 
box plots of crowding distance for each generation to 
assess the distribution of the population in the objective 
space. It can be observed from the figure that in the first 
30 generations, the overall crowding distance of the 
population is relatively high. As the number of iterations 

Table 4. Main injection parameters 

Injection 

Parameter 

Injection 

Temperature 

Injection 

Pressure 

Injection 

Flow Rate 

Upper Limit 233.15K 10MPa 20 t/d 

Lower Limit 298.15K 40MPa 50 t/d 

 

 
Fig. 3. Comparison of pareto fronts of the two algorithms 

 
Fig. 4. Translation of EDA-NSGA-II pareto front evolution 

 

 

 
Fig. 5. Crowding distance distribution over generations 
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increases, the crowding distance gradually decreases and 
tends to stabilize, indicating that the population is 
gradually converging to the Pareto front with a more 
uniform distribution of solutions. At the same time, the 
crowding distance of the population at each generation 
does not decrease steadily, which is due to significant 
variations that occurred within those generations. 

Subsequently, the optimization effects of the EDA-
NSGA-II algorithm on temperature and pressure were 
analyzed separately. The changes in the average 
temperature difference and the average pressure 
difference of the population are shown in the Figure 5. 
The curve of the average difference values of the 
population demonstrates the change in the overall 
fitness of the population during the optimization 
process. The gradual decrease in the average 
temperature and pressure differences indicates that the 
algorithm is continuously refining the population. 
However, significant fluctuations in the fitness value of 
the temperature difference were observed in the early 
generations, possibly due to greater variations in the 
search process of the population. 

The three-dimensional curves illustrate the changes 
in the target values with the number of iterations. 
Through these curves, we can intuitively observe the 
trend of the two target values throughout the entire 
iterative process. The results indicate that as the number 

of iterations increases, the target values gradually 
converge on the optimal solution set. In the final 
optimized combination of injection parameters, the 
difference in the downhole temperature from the target 
temperature is around 1K, and the difference in the 
downhole pressure from the target pressure is about 
0.2MPa. 

5. CONCLUSIONS 
In this paper, to address the design of injection 

parameters for CO2 Capture, Utilization, and Storage 
(CCUS) in Enhanced Oil Recovery (EOR) and storage 
operations, we propose an intelligent multi-objective 
optimization method based on the second-generation 
Non-Dominated Sorting Genetic Algorithm (NSGA-II) 
combined with the Estimation of Distribution Algorithm 
(EDA). Initially, we established a temperature and 
pressure calculation model for the CO2 injection 
wellbore, which can accurately simulate the 
characteristics of fluid flow along the wellbore and the 
temperature and pressure at the bottom hole. This 
model is crucial for understanding the transport 
mechanism of CO2 in the wellbore and provides a 
theoretical basis for the optimization of injection 
parameters. 

Subsequently, to address the limitations of the 
traditional NSGA-II algorithm in the optimization of CCUS 
parameters, we introduced the Estimation of 
Distribution Algorithm (EDA) to enhance the global and 
purposeful search capabilities of the algorithm. The 
improved EDA-NSGA-II algorithm significantly improves 
optimization performance and convergence speed while 
maintaining population diversity, effectively resolving 
the issues of randomness and local convergence in 
parameter optimization. 

Finally, through case analysis, we verified the 
effectiveness and superiority of the proposed intelligent 
optimization method in the design of CCUS injection 
parameters. Experimental results show that compared to 
the traditional NSGA-II algorithm, the EDA-NSGA-II 
algorithm can converge to the Pareto optimal solution 
set more quickly, and the obtained solution set is more 
uniformly distributed, closer to the needs of practical 
engineering, providing strong technical support for the 
implementation of CCUS projects. 
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Fig. 6 The differential evolution of the temperature and 
pressure curve(a) Pressure difference evolution curve(b) 
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