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ABSTRACT 
 With the increasing availability and affordability of 
building-integrated Heat Pumps (HPs), the number of 
heat pumps installed in residential buildings has risen 
significantly in recent years. When coupled with 
conventional District Heating (DH) systems in a hybrid 
setting, HPs provide higher energy reliability and cost-
effective solutions for domestic heating. The operation 
of such systems, however, requires a sophisticated 
control system that simultaneously considers the 
dynamics of energy pricing and building energy needs. In 
this paper, we propose a nonlinear economic model 
predictive control to determine the optimal share for a 
hybrid DH-HP heating system. A resistor-capacitor 
thermal building model is utilized to capture the system 
dynamics. The results indicate that the proposed 
controller in the hybrid DH-HP system has a cost saving 
between 29% and 57% compared to the baseline 
scenario. 

Keywords: Model predictive control, Cost 
optimization, Hybrid energy system, Heat pump, 
District heating, Nonlinear 

NOMENCLATURE 

Subscripts 
t Index of time 

Superscripts 
𝑚𝑖𝑛/𝑚𝑎𝑥 Minimum/Maximum boundaries 
Symbols 
𝑇𝑖𝑛 Building indoor temperature 
𝑇𝑜𝑢𝑡 Building outdoor temperature 
𝑇𝑒 Building envelope temperature 

𝜙𝐷𝐻 Heating power of district heating 
𝜙𝐻𝑃 Heating power of heat pump 
𝜙𝑠𝑜𝑙 Solar irradiance per area 
𝑃𝐻𝑃 Electric power of heat pump 
𝜂𝐷𝐻 District heating efficiency  

# This is a paper for the 16th International Conference on Applied Energy (ICAE2024), Sep. 1-5, 2024, Niigata, Japan. 

𝐶𝑂𝑃𝐻𝑃
Heat pump coefficient of 
performance 

𝜀𝑘 Slack variable 

𝑤𝑘 Weighting factor of the slack variable 
𝐶𝑖𝑛 Inner mass thermal capacitance 
𝐶𝑒 Envelope thermal capacitance 
𝐴𝑤 Total area of windows 
𝐴𝑒 Total area of exterior walls 
𝐺𝑤 Solar heat gain of windows 
𝐺𝑒 Solar heat gain of walls 
𝑅𝑖𝑛 Inner mass thermal resistance 
𝑅𝑒 Envelope thermal resistance 
𝑅𝑤 Windows thermal resistance 

1. INTRODUCTION
District Heating (DH) systems are the primary means

of supplying heat to urban areas and population centres 
in many countries with cold climates. Nonetheless, due 
to higher demands and costs associated with expanding 
DH systems, there is a growing interest in hybrid 
solutions that integrate several heat sources. Building-
integrated Heat Pumps (HPs), with their potential to use 
renewable energy sources, can greatly support 
conventional DH systems [1]. They are rapidly spreading 
and gaining popularity in countries with cold winter 
climates, such as Germany, Sweden, Denmark, and 
Austria, due to their decreasing costs and government 
incentives [1]. Not only are they able to assist to supply 
the heating demand in cold seasons, but these units also 
provide a highly efficient source of heating for end-users 
[2]. This generally results in lower energy bills for building 
managers and reduces the DH network demand by 
shifting the load to the electricity network. 

Developing a thermal energy model of the building 
can assist in predicting the indoor temperature while 
capturing the dynamics of the building —such as inertia 
and thermal capacity—leading to better-informed 
decisions. A resistance-capacitance (RC) equivalent 
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network model, often categorized as gray-box modelling 
[3], provides a fairly accurate approximation of a 
building’s dynamic behavior without a need for more 
computationally intensive simulations [4]. This approach, 
while simplifying laborious thermodynamic heat transfer 
calculations, has the advantage of flexible complexity, 
meaning that the model accuracy is correlated with the 
assumed number of building parameters. Tarragona et 
al. provides a review of the available building RC models 
with different numbers of parameters, and a particle 
swarm optimization-based algorithm is used for 
parameter identification of a 4R3C model [10]. In a 
research work by Plaum et al., a 3R2C model is 
considered, and a thermal parameter estimation for this 
model is proposed based on the available building 
thermal guidelines [5]. A 5R3C RC-model is developed by 
Golmohamadi et al. for buildings in different climate 
zones, and the building parameters are identified using a 
stochastic approach [6]. 

In environments where multiple energy sources are 
available, a rigorous control strategy is needed to enable 
flexible and cost-effective operation. This control can be 
central, distributed, or hybrid. Model Predictive Control 
(MPC) functions as a online control system with robust 
capabilities, addressing prediction errors and model 
mismatches in operational optimization by incorporating 
feedback from the network itself [7]. A study by Taylor et 
al. focuses on economic MPC (eMPC), which aims to 
minimize the cost, to control 5th generation district 
heating and a water source HP, along with other auxiliary 
local heating resources from a building perspective [8]. 
This controller uses a Mixed-Integer Linear Programming 
(MILP) rule-based model. Hermansen et al.  
investigated a simplified, linear MPC proposed to control 
a heat booster substation in an ultra-low temperature 
DH system connected to a small HP, a large HP, and 
thermal storage [9]. The simplified linear model, while 
providing high computational speed, is not capable of 
capturing all the complexity of the thermal nonlinear 
system. An economic evaluation of a hybrid heating 
system using an MPC algorithm, which includes a HP, 
thermal energy storage (TES), and photovoltaic (PV) 
panels, is presented by Tarragona et al. [10]. 
Additionally, an eMPC algorithm is developed in [6] to 
adjust heat consumption in response to electricity prices. 

In the current literature, integrated operation of HP-
DH systems, specifically from the perspective of building 
dynamics, remains insufficiently investigated. This gap 
highlights the need for a comprehensive exploration of 
how HP-DH systems can be effectively managed and 
optimized when considering the intricate thermal and 

operational behaviors of buildings. This paper presents a 
nonlinear-based eMPC control algorithm to optimize a 
hybrid heating system in a short-term horizon. The 
objective is to minimize the total cost of the DH-HP 
hybrid system from the end-user perspective. To build a 
rigorous model, the dynamics of the building are 
incorporated into the model with a state-space model 
based on a RC thermal algorithm. 

The rest of the paper is organized as follows: Section 
2 explains the resistor-capacitor model as well as the 
controller system adopted by this paper. Section 3 
outlines the simulation results. Section 4 discusses the 
the authors’ interpretation of the results. Finally, Section 
5 provides conclusions and suggests future work. 

2. MATERIALS AND METHODS 

2.1 Building Thermal Modelling 

This paper incorporates a 3R2C -three thermal 
resistances and two thermal capacitances-model applied 
to a single-family residential building test case study. The 
RC network representing the building model is depicted 
in Fig. 1. It is worth mentioning that in our analysis, HP, 
DH, and solar irradiation on the building’s envelope and 
windows are considered as the sources of heating 
energy. Conversely, for the sake of simplicity, process 
energy (including person energy, lighting energy, and 
appliances energy) and indoor furniture thermal 
resistance/capacitance are excluded from this study. 

 The general formulation of the state-space model 
based on Fig. 1 is expressed in equations (1) and (2). The 
model was proposed by Wang et al. [11].  
 

�̇�𝑖𝑛 =
1

𝑅𝑖𝑛𝐶𝑖𝑛
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1
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Fig. 1 RC network of the building thermal properties 
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2.2 Economic Model Predictive Control for Hybrid 
Energy System 

MPC is an online control strategy that aims to find 
the optimal value of an objective function. Given the 
current input signals and their future forecasts, MPC 
iteratively calculates and adjusts the control variables 
over a predefined control horizon, continuously 
optimizing system performance to meet specified 
objectives while adhering to constraints. In eMPC, the 
objective function incorporates economic cost 
considerations.  

Based on the state-space building model mentioned 
in Section 2.1, the adopted controller has two states, two 
inputs, and one output which are mentioned in equation 
(5). The primary goal of the controller in this research is 
to reduce the building's heat energy consumption and 
cost by choosing the most efficient resource based on 
current electricity and heating market prices. The 
controller parameters of the eMPC are the share of each 
heating resource over the simulation horizon. The 
objective function and main constraints of the problem 
are defined as follows: 

 

𝑂𝑏𝑗: 𝑀𝑖𝑛.∑𝐶𝐸𝑙(𝑃𝐻𝑃(𝑡)) + 𝐶𝐷𝐻 (
𝜙𝐷𝐻(𝑡)

𝜂𝐷𝐻
) + 𝑤𝑘𝜀𝑘  (3)

𝑡

 

 
Subject to: 

 

{
�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

                                                                      (4) 

 

𝑥 = [
𝑇𝑖𝑛
𝑇𝑒
] , 𝑢 = [

 𝜙𝐻𝑃
𝜙𝐷𝐻
𝜙𝑠𝑜𝑙
𝑇𝑜𝑢𝑡

] , 𝑦 = [𝑇𝑖𝑛]                                   (5) 
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𝐶 = [1 0] , 𝐷 = [0 0 0 0]                    

    (6) 

𝑃𝐻𝑃(𝑡) =
𝜙𝐻𝑃(𝑡)

𝐶𝑂𝑃𝐻𝑃
                                                               (7) 

 

𝑇𝑖𝑛
𝑚𝑖𝑛 + 𝜀𝑘 ≤ 𝑇𝑖𝑛(𝑡) ≤ 𝑇𝑖𝑛

𝑚𝑎𝑥 + 𝜀𝑘                                   (8) 
 

𝑃𝐻𝑃
𝑚𝑖𝑛 ≤ 𝑃𝐻𝑃(𝑡) ≤ 𝑃𝐻𝑃

𝑚𝑎𝑥                                                    (9) 
 

𝜙𝐷𝐻
𝑚𝑖𝑛 ≤ 𝜙𝐷𝐻(𝑡) ≤ 𝜙𝐷𝐻

𝑚𝑎𝑥                                                (10) 
 

In equation (3), the first and second terms refer to 
electricity and DH cost calculation, and the third term 
refers to the soft constraint on indoor temperature, 
introduced with a slack variable. The general controller 
state-space mode, our model components, and state-
space coefficients are presented in equations (4), (5) and 
(6). In equation (6), the coefficient matrices A, B, C, and 
D are deduced based on the state-space model 
presented in equations (1) and (2). The electricity power 
of HP is calculated with equation (7). The constraints 
regarding the upper and lower limits of indoor 
temperature, HP electricity, and DH heating power are 
shown in equations (8), (9), and (10), respectively.  

The state-space model and eMPC controller are 
designed in MATLAB® and Simulink® 2019 environment.  

3. RESULTS 

3.1 Simulation data 

To test the eMPC controller presented in this paper, 
a simulated test case study of a 1-zone, 60-m2 single-
family building located in Malmö, Sweden, is considered. 
The thermal parameters are calculated based on the 
guidelines given by Plaum et al. for a medium-weight 
apartment [5]. Table 1 shows the building and heating 

Table 1. Thermal network parameters 

Symbol Unit Value Symbol Unit Value 

Building Parameters 

𝐶𝑖𝑛 [
𝑘𝑊ℎ

℃
] 

2.749 
𝑅𝑖𝑛 [

℃

𝑘𝑊
] 

2.166 

𝐶𝑒 [
𝑘𝑊ℎ

℃
] 

9.186 
𝑅𝑒 [

℃

𝑘𝑊
] 

21.243 

𝐴𝑤 [𝑚2] 20 𝐺𝑤 [−] 0.5 

𝐴𝑒 [𝑚2] 180 𝐺𝑒 [−] 0.1 

𝑅𝑤 [
℃

𝑘𝑊
] 

41.66 
 

Heating System Parameters 

𝜙𝐻𝑃
𝑚𝑎𝑥 [𝑘𝑊] 15 𝑃𝐻𝑃

𝑚𝑎𝑥 [𝑘𝑊] 5 

𝜙𝐻𝑃
𝑚𝑖𝑛 [𝑘𝑊] 0 𝑃𝐻𝑃

𝑚𝑖𝑛 [𝑘𝑊] 0 

𝐶𝑂𝑃𝐻𝑃 [−] 3.5 𝜂𝐷𝐻 [−] 0.9 
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system parameters and the values that were adapted for 
the simulation section of this work. Additionally, the 
meteorological signal data indicating the outdoor 
temperature and solar irradiance of Malmö, Sweden, are 
retrieved from an online database [12] and shown in Fig. 
2, representing the first week of December 2020. Finally, 
to monetize the controller cost function, separate 
electricity prices and DH pricing signals are needed. 
Based on household energy pricing in south of Sweden 
[13] two assumed scenarios (S1 and S2) for a time of use-
based electricity prices and one DH pricing tariff are 
considered which are presented in Table 2. 

3.2 Numerical Results 

To demonstrate the efficiency of the eMPC 
algorithm, a base case with an on/off controller with a 

single energy supplier at a time is also considered. This 
controller operates by switching the supplier on when 
the temperature drops below the lower threshold and 
switching it off when the temperature reaches the upper 
threshold. This will leave us with three different cases:  

(C1) On/off controller HP supplier.  
(C2) On/off controller DH supplier.  
(C3) eMPC controller hybrid (DH-HP) supplier. 
 The cost and energy consumption of each case 

with S1 and S2 prices, mentioned in Section 3.1, over one 
week of simulation is calculated and depicted in Table 3. 
Additionally, Fig. 3, Fig. 4, and Fig. 5 represent the indoor 
temperature and heating power of the HP and DH over 
the simulation horizon for case (C1), case (C3) with S1 
prices, and case (C3) with S2 prices, respectively. The 
graphs representing case (C2) are not added due to 
similar attributes with case (C1) and to avoid repetition. 

4. DISCUSSION 
When analysing the simulation results and the 

behavior of the eMPC algorithm compared to the basic 
on/off controller, some observations are made. Overall, 
Table 3 indicate that the eMPC system results in a 

Table 2. electricity and district heating energy prices 

Hours 0-10 10-21 21-24 

Network status Off-peak Peak Off-peak 

Electricity Price 
(€/kWh) - S1 

0.1 0.4 0.1 

Electricity Price 
(€/kWh) - S2 

0.2 0.6 0.2 

DH Price (€/kWh) 0.1037 

 

Table 3. Simulation results on different controllers with 
S1 and S2 scenario prices  

Controller 
case 

(C1) On/off 
controller 
(HP) 

(C2) 
On/off 
controller 
(DH) 

(C3) eMPC 
controller 
(hybrid) 

Price Scenario S1 S2 S1 S2 S1 S2 

Electricity 
consumption 
(kWh) 

79.5 0 70 19 

DH heat 
consumption 
(kWh) 

0 313.33 0 35 

Simulation 
Cost (€) 

19.5 31.32 32.49 13.75 18.57 

 

 
Fig. 3 Simulation results of the case C1 - on/off controller with heat pump as the supplier for both S1 /S2 prices 

 

 
Fig. 2 Meteorological data (𝜙𝑠𝑜𝑙 , 𝑇𝑜𝑢𝑡) representing the 

simulation horizon  
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substantial cost saving from 29% up to 57% in S1, and 
nearly 40% under S2 prices over the simulation horizon 
in winter days. This saving in consumed energy and cost 
shows the effectiveness of the controller and hybrid DH-
HP solution. It should be noted that we are here not 
taking into account the additional investment and 
operational costs related to the HP. 

One apparent observation on the graphs is that the 
number of switches of the heat supplier in the eMPC 
controller is notably higher than that in the basic 
controller. The shortest interval between two on 
switches in the eMPC and the on/off controller were 0.8 
hrs and 1.8 hrs, respectively.  

Additionally, it was noted that the introduced slack 
variable makes the eMPC more forgiving to the changes 
in temperature, retaining it between 17.2 and 20.5. The 
on/off controller, however, has a stricter range of 17.9 to 
22.0 degrees. Thus, this version of the eMPC probably 
will provide lower comfort for the residents. 

Another remark is the price responsiveness. It can 
be observed in Fig. 4 and Fig.5 when compared to Fig. 3 
that unlike the on/off controller, the eMPC reacts to the 
changes in electricity prices. The system tends to 
increase the temperature just before (or sometimes at 
the beginning of) peak hours to use the building as heat 
storage during more expensive hours and use the 

heating system less frequently. This has resulted in cost 
savings during peak hours. 

Finally, another noticed element was the effect of 
price schemes on the hybrid energy system. Comparing 
Fig. 4 and Fig. 5, it is observed that the eMPC algorithm 
with S1 prices only tends to employ HP heating systems. 
Under the S2 pricing scheme, nevertheless, the DH prices 
become competitive in peak electricity hours, and the 
system starts using both heating systems throughout the 
simulation horizon. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, the application of an economic Model 

Predictive Controller (eMPC) system is simulated on a 
hybrid energy system of a single-family building. A base 
case of an on/off controller is considered to compare the 
results where possible. The heating system incorporates 
a building-integrated HP and central DH system. To 
capture the dynamic thermal attributes of the building, a 
state-space model with a resistor-capacitance network 
of the building is adopted. Some of the key findings of 
this research are: 

- The proposed controller resulted in savings up 
to 57% on energy bills. 

- The eMPC demonstrates price responsiveness 
effects, meaning that the energy consumption 

  
Fig. 4 Simulation results of the case C3 - eMPC controller with S1 prices 

 
Fig. 5 Simulation results of the case C3 - eMPC controller with S2 prices 
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pattern is changed when prices are altered 
during off-peak and peak hours. 

- While in S1 scenario HP is more cost-effective 
and the entire heat demand is supplied by this 
local unit, under the S2 electricity pricing, the 
DH prices become competitive, and they can 
support HP in a hybrid mode. 

For future developments of this work, additional 
objectives could be taken into account, for instance, 
environmental concerns like CO2 emissions and social 
effects like comfort level. In addition, further case 
studies with different applications, such as commercial 
buildings, under different weather conditions could be 
investigated to better understand the system behavior 
under changing circumstances. 
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