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ABSTRACT 
 The decarbonisation of the built environment is a 
critical strategy for addressing climate change and 
decarbonisation of heat plays a significant role in this 
process. However, the UK's progress in electrifying 
heating with heat pumps is significantly behind that of 
other European countries such as Finland and Norway. 
This study used clustering analysis to investigate UK 
consumers' energy consumption patterns and their 
correlation with socioeconomic characteristics to 
identify suitable households for heat pumps. The study 
optimised K-means outlier removal (K-MOR) using 
genetic algorithms (GA) to reveal five typical energy 
consumption patterns consistent with a classification of 
residential neighbourhoods (ACORN) socioeconomic 
segments. The findings of our study indicate that the 
highest energy consumption pattern requires about 3 
times the heating demand of the lowest pattern. 
Notably, 50.9% of households exhibit a middle-high load 
pattern, among which affluent households demonstrate 
higher heat pump adoption potential, while 14.44% of 
lower-income households face greater barriers to heat 
decarbonisation. 
Keywords: Clustering Analysis, Energy Consumption 
Patterns, Electrification of Heat, Heat Pump, 
Socioeconomic Factors. 

1. INTRODUCTION 
The UK government has introduced a series of strategies 
and roadmaps for decarbonisation to achieve the net-
zero emissions target by 2050 [1]. Heat pumps have been 
highlighted as a key measure of electrification of heating 
for net-zero transitions. However, current adoption rates 
are considerably low compared to EU countries, with 
only 2.13 heat pumps sold per 1,000 households in 2022 
[2]. This is primarily attributed to high installation costs 
and elevated electricity prices. While the government 
has introduced various schemes and grants, there 
remains a crucial need for precise targeting of these 
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incentives to households and communities requiring 
heating system upgrades. In this context, data-driven 
technologies are essential for analysing energy 
consumption data and locating regions and households 
that need support. 

Data-driven technologies are able to process large 
amounts of data quickly and use machine learning 
methods to analyse and reveal complex energy 
consumption patterns. Previous studies employed 
various clustering algorithms including K-Means [3], DTW 
[4], spectral clustering [5], PAM, [6] and Markov cluster 
[7] to analyse electricity and gas load data, revealing 
energy usage trends across user groups. The Z-Score [8] 
method was used frequently to clean abnormal load 
data, but it is not valid for non-Gaussian-distributed data. 
Silhouette coefficients, Calinski-Harabasz index, and 
Davies-Bouldin index evaluation metrics were used to 
evaluate the performance of clustering algorithms [9]. 

Gaur et al. [10] emphasised that developing 
supportive policies for different consumer groups is 
crucial for the large-scale deployment of heat pumps. 
Few et al. [11] also discussed the impact of geographical 
regions and socioeconomic conditions on cost-effective 
heat pump deployment strategies. Therefore, many 
studies often overlook important socioeconomic factors 
that play a key role in determining the economic 
capability of consumers and the feasibility of the 
widespread adoption of heat pumps. 

To address these challenges, this paper presented a 
clustering analysis approach based on a classification of 
residential neighbourhoods (ACORN) data and Energy 
Demand Research Project (EDRP) data [12] to map heat 
electrification to socioeconomic segments of consumers. 
Our work offers two primary contributions that 
distinguish it from existing research: 
⚫ This study proposed an adaptive load profile 

clustering method using a genetic algorithm (GA) to 
optimise K-means outlier removal (K-MOR) [13]. 
Compared with existing methods, it effectively 
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mitigated the impact of anomalous load profiles on 
the clustering results while avoiding local optimum 
problems to reflect household electricity and gas 
demand differences. 

⚫ Using the Hungarian algorithm and ACORN 
classifications, this study identified five typical 
energy load patterns and investigated 
socioeconomic impacts on energy load patterns. 
Results indicate that 14.44% of households have 
low incomes but high energy use, making them 
reliant on grants to install heat pumps. 
The paper is structured as follows. Section 2 

describes the used data and clustering algorithm as well 
as the approach of mapping socioeconomic segments to 
the clustering results. Section 3 presents the results and 
analysis. Finally, the conclusion is drawn in Section 4. 

2. METHODOLOGY 
This section introduces the proposed consumer 

clustering framework that primarily targets residential 
customers in Great Britain (GB), categorising households 
by energy demand levels. It also investigates how 
socioeconomic status affects adoption of heat pumps. 

2.1 Data description and processing 

EDRP is a comprehensive residential energy 
consumption data collection initiative undertaken in GB, 
which gathered half-hourly electricity and gas demand 
data from over 60,000 households. This study focused on 
households that use dual fuels (both electricity and gas) 
during the winter months (December, January and 
February), which are characterised by higher energy 
demand to capture typical consumption patterns. 
Missing values and samples with fewer than 48 half-
hourly recordings per day were excluded, remaining 
8,103 households. Then, Min-Max normalisation was 
used to ensure the data is in the same scale and 
facilitating faster convergence for the algorithm [14]. 

2.2 Clustering algorithms 

Based on analyses of consumption patterns, this 
study used five clusters to categorise consumers into 
distinct groups characterised by daily energy demand 
profiles. Five clusters ranging from low to high usage 
patterns in energy consumption levels could effectively 
distinguish the inherent variations in different residential 
energy consumption behaviours. 

The presence of outliers would affect clustering 
performance. Therefore, the K-MOR algorithm was 
employed to mitigate the impact of outlier loads on 
clustering performance. In addition, we proposed 

integrating GA's adaptive search strategy to optimise 
clustering centroids, mitigating the sensitivity of K-
Means to initial centroids and the problem of premature 
local convergence. 

The objective of the K-Means is to minimise the sum 
of the squared distances between data points and their 
corresponding cluster centroids as 

𝐽 = min
𝑢𝑖,𝑙,𝒄𝒊

∑ ∑ 𝑢𝑖,𝑙‖𝒙𝑖 − 𝐜𝑙‖2

𝑘

𝑙=1

𝑛

𝑖=1

 , (1) 

where ‖𝒙𝑖 − 𝒄𝑙‖2 represents the distance between the 
data point 𝒙𝑖 and geometric centroid of cluster 𝐜𝑙, 𝑢𝑖,𝑙  

is a binary variable that describes the relationship 
between data points and clusters, 𝑙 ∈ {1, 2, . . . , k} 
represents the index of the cluster to which the data 
point 𝒙𝑖 is assigned, and ‖ ∙  ‖ is the Euclidean norm. 

GA optimised the K-Means algorithm by iteratively 
evolving cluster centroids using selection, crossover, and 
mutation to refine clustering solutions. The pseudo-code 
of the above operations is given in Algorithm 1. 

Algorithm1: Pseudo-Code of Genetic K-Means Clustering 

Input: X (dataset), 𝑘 (number of clusters), N (population 
size), G (number of generations), δ (Mutation 
vector) 

Output:  Optimal cluster centroids 

1 Initialise population 𝐂current = {𝐂1, 𝐂2, … , 𝐂𝑁} 

2 for generation to G do 

3   for each 𝐂𝑖 in 𝐂current do 

4     Compute fitness 𝑓(𝐂𝑖) 

5   Select parent centroids (𝐂parents) based on 𝑓(𝐂𝑖) 

6 Generate offspring (𝐂offspring) by crossover 

7 Perform mutation on offspring using 𝜹𝒊 

8   𝐂nextPopulation = 𝐂parents ∪ 𝐂offspring 

9 end 

Step 1: Fitness serves as the criterion for distinguishing 
the quality of individuals in the population. Individuals 
with higher fitness have a greater likelihood of survival. 
For a cluster centroid configuration denoted as 𝐂𝑖 , 
which is a matrix consisting of 𝑘 cluster centroids, the 
fitness function is designed as shown in Eq. (2) [15]. 

𝑓(𝐂𝑖) =
1

1 + 𝐽
 . (2) 

Here, constructing the fitness function based on the 
objective function 𝐽  of K-Means. Since a smaller 
distance and 𝐽  value indicate the larger the fitness 
value and better clustering quality.  
Step 2: According to the fitness value select a portion of 
individuals as parents. The probability of selecting the 
𝑖th set of cluster centroids (chromosome) is  

𝑃(𝐂𝑖) =
𝑓(𝐂𝑖)

∑ 𝑓(𝐂𝑗)𝑁
𝑗=1

, (3) 
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where 𝑁 is the population size [15]. 
Step 3: Crossover combines parts of two parent 
chromosomes to produce offspring (𝐂offspring)  

𝐂offspring = {𝒄𝑝1, … , 𝒄𝑝𝑚, 𝒄𝑞(𝑚+1), … , 𝒄𝑞𝑘}, (4) 

where 𝒄𝑝𝑖  and 𝒄𝑞𝑖  are vectors of size 𝑑 , which 

represent cluster centroids in a 𝑑-dimensional feature 
space; 𝑘 is the number of clusters; 𝑚 is the crossover 
point that decides the split between the parents. 
Step 4: Mutation operations are performed by 
introducing small random perturbations to the positions 
of cluster centroids. For a selected mutation cluster 
centroids denoted as 𝐂𝑖, and we define 𝐂𝑖

′ as the new 
cluster centroid after the mutation operation, which can 
be expressed as: 

𝐂𝑖
′ = 𝐂𝑖 + 𝜹 , (5) 

where δ is small random perturbation vector of size 𝑑. 
Step 5: The current population is updated by combining 
the selected parents and the generated offspring. 

Repeat steps 1-5 to improve cluster centers and find 
a better solution until reaching the defined maximum 
number of iterations, typically set as 100. 

2.3 Mapping to socioeconomic data 

To define five typical load patterns based on 
consumption levels, the Hungarian algorithm [16] was 
used to match electricity and gas load clusters while 
minimising the cost matrix ( 𝐂cost ) that has a size of 
𝑘 × 𝑘 , 𝑘  is the number of clusters. It can be 
represented as 

𝐂cost = [

𝑑11 𝑑12 … 𝑑1𝑘

𝑑21 𝑑22 … 𝑑2𝑘

⋮ ⋮ ⋱ ⋮

𝑑𝑘1 𝑑𝑘2 … 𝑑𝑘𝑘

] (6) 

where elements 𝑑𝑖𝑗  represent the distance between 

electricity load cluster 𝑖  and gas load cluster 𝑗 . The 
clusters were matched by minimising the distance value 
in the 𝐂cost , which quantified their similarity. This 
process results in five typical load patterns. 

The geographical and demographic information of 
EDRP dataset contains basic ACORN categories for each 
household. Households from the five predefined load 
patterns were linked to their respective ACORN 
categories using unique identifiers in both datasets. 
These categories were initially in numerical codes and 
were converted to descriptive labels according to the 
classification system for interpreting socioeconomic 
segments intuitively. However, the "Not Private 
Households" category was excluded due to its sample 
size being significantly smaller than others. In this study, 
therefore, households were classified into five groups 
based on the ACORN: Affluent Lifestyles, Mature 

Prosperity, Comfortable Communities, Social Extension, 
and Low Income Living. 

To quantify the socioeconomic composition of each 
load pattern, the proportion of each ACORN category 
was calculated. This was done by dividing the number of 
households in each ACORN category by the total number 
of households in the respective load pattern. 
Additionally, the daily heating demand of 5 patterns was 
evaluated to highlight differences in energy consumption 
across socioeconomic segments of consumers. 

3. RESULTS AND DISCUSSION 
A comparative analysis of our proposed clustering 

algorithm against GMM, K-Means, DPMM, and DTW 
clustering methods reveals its superior performance. As 
illustrated in Fig. 1, when the number of clusters is five, 
our algorithm consistently outperforms other methods 
across three key performance metrics. 

 
Fig. 1 Evaluation indicators comparison of algorithms 

After applying the GA K-Means Clustering algorithm, 
the daily electricity and gas load consumption was 
divided into five clusters. The clustering results are 
shown in Fig. 2 and Fig. 3 where different colours are 
used to distinguish centroids for electricity and gas 
clusters. Comparative analysis of these figures shows 
that the double peaks of gas load profiles display greater 
intra-day variability and higher peak-to-mean ratios [17] 
than electricity profiles. Electricity load profiles across 
most clusters show a consistent feature, the peak 
primarily occurring at 6 pm. 

 
Fig. 2 Clustering result of electricity and gas daily load profiles 

 
Fig. 3 Cluster centroid profiles of power and gas daily load 
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In the left plot of Fig. 3, cluster 1 and cluster 4 exhibit 
similar low electricity demand levels. In contrast, cluster 
2 and cluster 3 show higher consumption levels but differ 
in usage patterns. Cluster 3 shows distinct peaks at night 
with the highest half-hourly power demand reaching 
about 1.6 kWh, which may represent households heating 
with electric radiators with storage. Cluster 5 
demonstrates moderate electricity consumption levels 
and has an average daily demand of 0.53 kWh. 

The gas load clustering results in the right plot of Fig. 
3, cluster 1 and cluster 2 show moderate gas usage, with 
two peaks at 6.30 am and 5 pm. Cluster 3 and cluster 4 
display low gas usage, and cluster 4 has slight 
fluctuations. However, cluster 5 has pronounced peaks 
in the morning and evening, potentially indicating 
households using advanced smart control systems. These 
systems may be programmed to maintain a minimum 
temperature and trigger intense heating when this 
threshold is reached. 

Analysis of household energy consumption patterns 
reveals complex relationships with socioeconomic 
segments. Five typical load patterns were obtained by 
matching the results of electricity and gas load 
clustering. These patterns stand for various levels of 
energy consumption, increasing gradually from Pattern 1 
to Pattern 5. The daily heating demand for each pattern 
is formulated by Eq. (6). 

𝑄Heat = ∑(𝑃 t
Elec × 𝜂Elec + 𝑃 t

Gas × 𝜂GB) ×  ∆t

48

t=1

(6) 

where 𝑃 t
Elec  and 𝑃 t

Gas  denote the electricity and gas 

loads at time t, 𝜂Elec and 𝜂GB represent the heating 
efficiency of the electrical heating appliance and gas 
boiler, with values of 100% and 95% [18]. Fig. 4 reveals 
the daily heating demand of the highest load pattern is 
3.1 times higher than the lowest load pattern. 

 
Fig. 4 Daily heating demand of households in five load 

patterns  

Fig. 5 shows the distribution of the 5 socioeconomic 
segments characteristics in each pattern. High-energy-
consuming households (Pattern 4 and Pattern 5) account 
for 50.9% of the total and are ideal candidates for heat 
pumps. It is because the efficiency benefits of heat 

pumps are maximised in the face of constant and 
substantial heat demand, and such households can 
achieve long-term energy cost savings through heat 
pump adoption. 

 
Fig. 5 Mapping the distribution of socioeconomic segments in 

five load patterns  

However, as energy demand increases, the 
proportion of ‘low-income living’ households in the 
corresponding load pattern also gradually rises. Notably, 
14.44 % of middle-low-income households exhibit a 
higher energy demand. In the UK, low-income 
households have a weekly net income of less than £300 
after net of taxes and housing costs, whilst this figure 
approaches £1,000 for high-income households [19]. 
Therefore, low-income households may struggle to 
afford the initial installation cost of heat pumps, which 
requires a targeted grant of £5,000 per property towards 
heat pump [1]. 

4. CONCLUSIONS 
This study proposed a novel approach to identifying 

suitable households for deploying heat pumps by 
integrating clustering techniques with socioeconomic 
segments. The proposed method integrated GA to 
optimise K-Means within the K-MOR framework, 
demonstrating superior performance in profiling energy 
consumption patterns compared to conventional 
approaches. The findings indicate that the highest load 
pattern's daily heating demand is about 3.1 times that of 
the lowest load pattern, where 50.9% of households 
exhibit a middle-higher-load pattern and are suitable for 
installing heat pumps. However, 14.44 % of households 
are in urgent need of capital grants to help property 
owners overcome the upfront cost of installing heat 
pumps. These insights provide a solid basis for 
establishing targeted heat pump deployment strategies 
towards net-zero targets. 

In our future research, we plan to quantify the 
potential emission reductions from widespread heat 
pump adoption across different socioeconomic 
segments and assess whether the existing electrical 
infrastructure can support the increased power demand. 
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