Facile construction of ZnNi2O⁴ materials as high-performance anode for lithium-ion capacitors

Xinrong Lv^{1, 2}, Junsheng Zheng^{1, 2*}

1 Clean Energy Automotive Engineering Center, Tongji University, Jiading District, Shanghai 201804, China

2 College of Automotive Studies, Tongji University, Jiading District, Shanghai 201804, China

(Corresponding Author[: jszheng@tongji.edu.cn\)](mailto:jszheng@tongji.edu.cn)

ABSTRACT

In this paper, a $ZnNi₂O₄$ anode material is prepared by a simple hydrothermal reaction process for lithium-ion capacitors. Bimetallic oxides exhibit excellent specific capacity and cycle stability based on redox reactions of different metals. The morphology, composition and structure of $ZnNi₂O₄$ are characterized by X-ray diffraction, transmission electron microscope and X-ray photoelectron spectroscopy. At a current density of 0.1 A g^{-1} , the ZnNi₂O₄ has a high initial specific capacity of 1244.73 mAh g^{-1} . Even when the current density is 1 A g^{-1} ¹, the specific capacity of ZnNi₂O₄ is still as high as 342.41 mAh g^{-1} . It is worth noting that the excellent electrochemical results indicate that $ZnNi₂O₄$ is a promising anode candidate for lithium-ion capacitors.

Keywords: ZnNi2O4, bimetallic oxides, lithium-ion capacitor, anode material

NONMENCLATURE

1. INTRODUCTION

W With the intensification of environmental problems and the increasing demand for energy, it is urgent to develop and research sustainable energy [1]. Lithium-ion capacitors have attracted much attention because they combine the high power density of supercapacitors with the high energy density of lithiumion batteries [2]. Electrode materials are one of the key components of Lithium-ion capacitors, so it is important to develop anode materials with high specific capacitance and high performance of Lithium-ion capacitors.

Transition metal oxides are used as anodes for Lithium-ion capacitors because of their high specific capacitance, ecological friendliness, low cost, simple preparation, high safety and excellent performance. Common bimetallic oxides include $MnCo₂O₄$, NiGa₂O₄, $NiCo₂O₄$ [3] and NiFe₂O₄ [4]. Fan et al. synthesized $TiO₂/MnCo₂O₄$ by solvothermal method. The addition of tubular $TiO₂$ alleviates the agglomeration phenomenon of MnCo₂O₄, thus shortening the diffusion path of lithium ions. The $TiO₂/MnCo₂O₄$ composite showed excellent capacitance of 743 mAh g^{-1} and excellent rate performance as an anode. It is further assembled with activated carbon electrode as cathode to form Lithiumion capacitor. Lithium-ion capacitor provides high energy densities of 89.8 and 44.1 Wh $kg⁻¹$ at power densities of 0.25 and 3.41 kW kg^{-1} , respectively [5]. He et al. synthesized a nano-flower-shaped NiGa₂O₄ through hydrothermal reaction and calcination process. NiGa₂O₄ not only has alloy reaction to produce Ga, but also has a

This is a paper for the 16th International Conference on Applied Energy (ICAE2024), Sep. 1-5, 2024, Niigata, Japan.

hybrid energy storage mechanism including conversion reaction to produce Ni. These two energy storage mechanisms make NiGa₂O₄ show excellent performance. $NIGa₂O₄$ /AC lithium-ion capacitor device is composed of NiGa₂O₄//AC as anode and activated carbon as cathode. The device exhibits excellent energy density and power density performance, with a high energy density of 104.89 Wh kg⁻¹ (200 W kg⁻¹) and a high power density of 3999 W kg^{-1} (25.44 Wh kg^{-1}) [6]. Bimetallic oxides, especially $ZiNi₂O₄$, have excellent specific capacitance and electrochemical properties due to various redox states and different redox reactions.

In this paper, we propose a bimetallic oxide $ZnNi₂O₄$ as anode material for Li-ion capacitors. The material was synthesized by simple control of the molar ratio of Zn and Ni precursors and hydrothermal reaction. The bimetallic oxide ZnNi2O⁴ alleviates the volume expansion and contraction of lithium-ion capacitors in the process of charge and discharge by using the complementary and synergistic interaction between different metals. Bimetallic oxide $ZnNi₂O₄$ shows excellent capacitance and electrochemical properties and is an excellent anode material for lithium ion capacitors.

2. EXPERIMENTAL

2.1 Chemicals

 $NISO_4·6H_2O$, Zn $SO_4·7H_2O$, urea were obtained from Macklin Co., Ltd. (ShangHai, China) without further purification.

2.2 Preparation of ZnNi2O⁴

Preparation of $ZnNi₂O₄$: 0.1 mol NiSO₄.6H₂O and 0.05 mol ZnSO4·7H2O were added into 75 mL ultra-pure water for 6 h. Then 0.2 mol of urea was added and stirred continuously for 7 h. The prepared solution was added to 150 mL teflon-lined autoclave and reacted at 120°C for 36 h. After cooling, the prepared powder sample is taken out and cleaned several times with ultra-pure water and ethanol. Finally, the samples were put into a vacuum drying oven and dried at 70°C for 12 h.

2.3 Material characterizations

The crystal structures of $ZnNi₂O₄$ was characterized by X-ray diffraction at the scanning rate of 10° min⁻¹ in the range of 10–90° of 2θ with Rigaku-D/Max-2550PC (Japan). The chemical states of the surface elements of ZnNi2O⁴ was measured by X-ray photoelectron spectroscopy with Thermo Scientific of Escalab 250Xi. The morphology of electrode material $ZnNi₂O₄$ was studied by JEM-2100F transmission electron microscope (Japan).

2.4 Electrochemical measurement

The $ZnNi₂O₄$ anode were prepared by blade coating method. The specific preparation process of $ZnNi₂O₄$ is as follows: the $ZnNi₂O₄$, Super P and Polyvinylidene fluoride are mixed at a ratio of 80:10:10. Then a certain amount of N-methyl pyrotanone solvent is added to mix it to form a uniform slurry. The prepared uniform slurry is further coated on the Cu foil. Finally, the slurry was vacuum-dried at 80 °C for 12 h and drilled into a disc with a diameter of 12 mm. The surface loads of $ZnNi₂O₄$ electrodes prepared by this method are about 2 mg cm⁻ ². ZnNi₂O₄/Li half cells (standard CR2032) are prepared in an Ar glove box with oxygen and water content of less than 1.0 ppm. In the process of preparing the half cell, separators use the microporous glass microfiber filter (Whatman GF/C), and the electrolyte consists of 1 M LiPF $_6$ in the EC and DMC, with a volume ratio of 1:1. It is worth noting that the preparation process of all cells is standardized by adding 100 μL electrolyte.

3. RESULTS AND DISCUSSION

3.1 Characterization of ZnNi2O⁴

In order to understand the crystal structure of ZnNi2O4, it was characterized by X-ray diffraction in the range of 10-90°. By analyzing the X-ray diffraction pattern of $ZnNi₂O₄$, it can be seen from Fig. 1 that the characteristic peaks are located at 31.7°, 34.5° and 47.4° corresponding to the (100), (002) and (102) crystal plane of ZnO, respectively (marked in blue) according to JCPDS card number of 79–0208. The characteristic peak at 62.8° corresponds to the (220) crystal plane of NiO (marked in green) according to JCPDS card number of 78–0423. The characteristic peaks at 36.9 and 42.8 correspond to the (110) and (200) crystal plane of $ZnNi₂O₄$ with d-spaccing of 2.4 Å and 2.08 Å, respectively (mark in black) [7].

Fig. 1. The X-ray diffraction *image of* ZnNi2O⁴

The specific surface area and pore size distribution of ZnNi2O⁴ were further determined and analyzed. The specific surface area of $ZnNi₂O₄$ was determined by Bruauer-Emmet-Teller (BET) method and the pore size distribution of ZnNi₂O₄ was determined by Barrett-Joyner-Halenda (BJH) method. Fig. 2A shows the N_2 adsorption-desorption isotherm of ZnNi₂O₄. It can be seen from the figure that $ZnNi₂O₄$ is a H3-type hysteresis loop, indicating that it is a type IV adsorption and desorption isotherm. The specific surface area of ZnNi₂O₄ is 10.47 m^2 g^{-1} . The pore size distribution of ZnNi₂O₄ is shown in Fig. 2B. It can be seen from the pore size distribution that the pore size of $ZnNi₂O₄$ is about 17.32 nm. In conclusion, $ZnNi₂O₄$ has a large specific surface area and its pore size is conducive to increasing the contact between electrolyte and electrode interface, providing more active sites for the storage of lithium ions, thus improving the capacitance and

Fig. 2.(A)The N² adsorption-desorption isotherms of ZnNi2O4; (B) pore size distributions of ZnNi2O⁴

The elemental and valence states of $ZnNi₂O₄$ were characterized by X-ray photoelectron spectroscopy, and the results are shown in Fig. 3. According to the results of Fig. 3A, it can be seen that electrode material $ZnNi₂O₄$ contains elements Ni, Co, and O. The high-resolution Xray photoelectron spectroscopy spectrum of O 1s is shown in Fig. 3B, with two peaks at around 530.8 eV and 533.1 eV attributed to metal-oxygen bonds (Zn/Ni−O) and other oxygen types, including H2O in adsorbed air. In the high-resolution X-ray photoelectron spectroscopy spectra of Zn 2p (Fig. 3C), two characteristic peaks of spin orbits were observed at 1021.5eV and 1044.8eV, corresponding to Zn $2p_{3/2}$ and Zn $2p_{1/2}$, respectively, demonstrating the presence of Zn^{2+} [7]. The highresolution X-ray photoelectron spectroscopy spectrum of Ni 2p is shown in Fig. 3D. There are obvious peaks at 855.5 eV and 873.8 eV, corresponding to Ni $2p_{3/2}$ and Ni $2p_{1/2}$ respectively, indicating the presence of Ni²⁺ and Ni³⁺. It is worth noting that there are clear peaks at 861.9 eV and 879.8 eV for the two shake-up satellites [8].

Fig. 3. (A) X-ray photoelectron spectroscopy full spectrum of ZnNi2O4; High-resolution XPS spectrum of (B) O1 s; (C) Zn 2p and (D) Ni 2p for ZnNi2O4.

The morphology of electrode material $ZnNi₂O₄$ was studied by transmission electron microscope test. As can be seen from Fig. 4, ZnNi₂O₄ presents a nanorod-like structure. The rod-like structure of $ZnNi₂O₄$ is about 450 nm in length and 125 nm in width. The nanorod structure of $ZnNi₂O₄$ can shorten the migration path of lithium ions and alleviate the volume expansion effect of electrode materials during the charge and discharge process, thus promoting the rate performance and cycle stability of lithium ion capacitors.

Fig. 4. The transmission electron microscope *image of ZnNi2O⁴*

3.2 Electrochemical properties of ZnNi2O⁴

The electrochemical properties of $ZnNi₂O₄$ were tested in a standard half cell. The lithium storage performance of electrode material ZnNi₂O₄ as anode of lithium-ion capacitors was studied. Cyclic voltammetry

test was performed on $ZnNi₂O₄$ at a scanning rate of 0.2 mV $s⁻¹$ in the voltage range of 0.01-3 V. As shown in Fig. 5A, there is a wide cathodic peak at 0.43 V, which may be attributed to the reduction of $ZnNi₂O₄$ to metals Zn and Ni, the specific reduction process is shown in the formula (1). During the subsequent sweeping process, the cathodic peak moved to a lower potential and increased in intensity, which may be related to the incomplete infiltration of the electrode and the formation of the solid electrolyte interface. The anodic peak at 1.25 V is associated with the oxidation of metals Zn and Ni to Zn^{2+} and Ni³⁺. The entire electrochemical process of ZnNi₂O₄ can be expressed as formulas (1)-(2).

 $ZnNi₂O₄ + 8Li⁺ + 8e⁻ → 4Li₂O + 2Ni + Zn$ (1)

$$
3Li_2O + 2Ni + Zn \rightarrow 2NiO + ZnO + 6Li^+ + 6e^-
$$
 (2)

The first five times of constant current charge and discharge of $ZnNi₂O₄$ were tested under the current density of 0.1 A g^{-1} and voltage range of 0.01-3 V. As can be seen from Fig. 5B, the initial charging capacity of $ZnNi₂O₄$ is 1728.0 mAh $g⁻¹$ and the coulomb efficiency is 76.6%. The low initial coulomb efficiency of ZnNi₂O₄ may be caused by the formation of solid electrolyte interface film [9]. Fig. 5C shows the charge and discharge curves of the electrode material $ZnNi₂O₄$ at different current densities. As can be seen from Fig. 5C, the charge and discharge curves of the electrode material $ZnNi₂O₄$ at different current densities all show similar shapes, indicating that the electrode material ZnNi₂O₄ has good electrochemical reversibility. Fig. 5D shows the rate performance of ZnNi₂O₄. As can be seen from Fig. 5D, when the current density is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 A g^{-1} , the capacitance value of ZnNi₂O₄ is 1244.73, 684.37, 543.56, 476.79, 437.63, 409.96, 389.01, 371.7, 356.93 and 342.4 mAh g^{-1} , respectively.

Fig. 5. (A) The CV curves of ZnNi2O⁴ at a scan rate of 0.2 mV s[−]¹ , (B) Charge/discharge curves of ZnNi2O⁴ at a current density of 0.1 A g −1 . (C) Charge/discharge curves

of ZnNi2O⁴ at the different current density. (D) Rate performances from 0.1 to 1 A g[−]¹ of ZnNi2O4.

4. CONCLUSIONS

In summary, the advantages of bimetallic oxides as anodes for lithium-ion capacitors include high capacity and a variety of redox states. A rod-like electrode material ZnNi2O⁴ was synthesized by a simple hydrothermal reaction. Through a series of tests, ZnNi₂O₄ shows excellent electrochemical properties, including high charge-discharge capacity and good rate performance. At a current density of 0.1 A g^{-1} , ZnNi₂O₄ has a high initial specific capacity of 1244.73 mAh g^{-1} . The excellent performance of electrode material $ZnNi₂O₄$ makes it a promising anode for lithium-ion capacitors.

ACKNOWLEDGEMENT

The work was sponsored by the financial support from the National Natural Science Foundation of China (52307249), National Science Foundation of Shanghai Province (23ZR1465900), Fundamental Research Funds for the Central Universities at Tongji University (PA2022000668, 22120220426), International Exchange Program for Graduate Students, Tongji University.

REFERENCE

[1] Zhu CY , Mao JJ, Zhao JY, Xu Y, Li G, Li JD, Cheng F. Interface engineering to construct heterostructured $SnS₂$ $/$ Sb₂S₃ on rGO through a targeted-complexation deposition strategy for high-performance lithium-ion capacitors. Chem Eng J 2024;493:152702.

[2] Xu XY, Zhang J, Zhang ZH, Lu GD, Cao W, Wang N, Xia YM, Feng QL, Qiao SL. All-covalent organic framework nanofilms assembled lithium-ion capacitor to solve the imbalanced charge storage kinetics. Nano-Micro Lett 2024;16:116.

[3] Lovett AJ, Daramalla V, Sayed FN, Nayak D, de h-Ora M, Grey CP, Dutton SE, MacManus-Driscoll JL. Low temperature epitaxial LiMn₂O₄ cathodes enabled by $NiCo₂O₄$ current collector for high-performance microbatteries. ACS Energy Lett 2023;8:3437-3442.

[4] Du WQ, Zheng YQ, Liu XY, Cheng J, Zeb A, Lin XM, Luo YF, Reddy RCK. Oxygen-enriched vacancy spinel $MFe₂O₄/carbon (M = Ni, Mn, Co) derived from metal$ organic frameworks toward boosting lithium storage. Chem Eng J 2023;451:138626.

[5] Fan LQ, Huang JL, Wang YL, Geng CL, Sun SJ, Huang YF, Lin JM, Wu JH. TiO₂ nanotubes supported ultrafine $MnCo₂O₄$ nanoparticles as a superior-performance anode for lithium-ion capacitors. Int J Hydrogen Energ 2021;46:35330-35341.

[6] He ZH, Gao JF, Kong LB. NiGa2O4 Nanosheets in a microflower architecture as anode materials for li-ion capacitors. ACS Appl Nano Mater 2020;2:6238.

[7] Koudahi MF, Naji L. Hydrothermal synthesis of nickel foam-supported spinel ZnNi2O⁴ nanostructure as electrode materials for supercapacitors. Electrochim Acta 2022;434:141314.

[8] Zhao J, Zhou CL, Li YJ, Cheng K, Zhu K, Ye K, Yan J, Cao DX, Xie Y, Wang GL. Nickel cobalt oxide nanowiresmodified hollow carbon tubular bundles for highperformance sodium-ion hybrid capacitors. Int J Energ Res 2020;44: 3883-3892.

[9] Sahoo G, Senthamaraikannan TG, Jeong HS, Bandyopadhyay P, Lim DH, Nayak SK, Jeong SM. An effective lithium incorporation strategy to boost the charge-storage capacity of bimetallic metal-organic frameworks with theoretical insights and solid-state lithium-ion capacitors. J Mater Chem A 2024.