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ABSTRACT 
 

 This paper presents a comparison of different 
statistical and machine learning models using five groups 
of input features to forecast the future demand of a 
region, comprising 5 adjacent cities (Lahore, 
Sheikhupura, Kasur, Okara, Nankana), managed by a 
single government-operated utility. The proposed 
methodology was constructed using hourly data of 
electricity load in MW and hourly data of three weather 
variables with the highest correlation with load, for more 
than 10 years i.e. from July 2013 to Dec 2023. We have 
applied LM, SVM, and LSTM models, the most widely 
used techniques in literature for long term load 
forecasts. In three years of out-of-sample forecasts with 
26041 timesteps, the SVM model performed best with a 
MAPE value of 2.98% applying ARIMA with Kalman 
smoothing to fill missing load values for 4 months. 
However, LSTM performed 2.5 times better than LM and 
SVM if input features are only weather variables and 
historical hourly load is not provided as input to training 
and test sets.  
 
Keywords: Power System planning, Load Forecasting, 
climate change 

NOMENCLATURE 
 

ARIMA Auto Regressive Moving Average 

LSTM Long Short term memory 

SVM Support Vector machines 

LM 

GA   

Linear Regression Model 

Genetic Algorithms                    

  

Symbols  

h hour 

MW mega watts 
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1. INTRODUCTION 
 

The main objective of power system planning is to 
meet the energy demand reliably in a sustainable way. 
All investment decisions in the power sector are based 
on the statistics of addition in generation capacity, 
expansion in transmission network, and enhancement in 
distribution facilities which in turn depend on accurate 
load forecast [1]. Electric utilities sign future contracts for 
profit maximization with reduced risk [2]. Generation 
contracts are long term and require the most accurate 
forecasts for optimal investment decisions. Even small 
improvements in electricity forecasted value save 
millions of dollars. A study found that a mere 1% 
reduction in forecast error led to a £10 million decrease 
in annual operating costs for an electric utility in the 
United Kingdom [3]. Inaccurate load forecast results in 
over or under investment that causes higher tariffs or 
load management respectively. Electricity demand 
forecasting models are developed to study forecasting 
for different time horizons. The time horizon is classified 
into 4 categories that are very short term which is less 
than an hour, short term which ranges from 1 hour to 
several days, mid-term is from 1 month to a season and 
long term is from a year to several years. [4]. As 
forecasting becomes very challenging in the long term 
due to its complexity, difficulty in gathering and 
processing data, and uncertainty due to the large time 
horizons involved, most of the research on predicting 
future loads is now focused on short term load 
forecasting. There is more need to work on long term 
forecasts with novel techniques to improve forecasting 
errors and reduce model run time so that utilities can 
make the least cost generation, transmission, and 
distribution plans. Most researchers work on monthly 
granularity for long term forecasting [5]. 
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Load forecasting models can generally be 
categorized into two broad classes: classical statistical 
techniques and modern machine learning (ML) 
approaches. These techniques include regression, 
multiple regression, exponential smoothing, iterative 
reweighted least squares, adaptive load forecasting, 
stochastic time series autoregressive, ARMA model, 
ARIMA model, support vector machine-based models, 
soft-computing based models, genetic algorithms, fuzzy 
logic, neural networks, and knowledge-based expert 
systems, etc. Each technique has merits and demerits [6]. 
From the works reported so far, it can be inferred that 
demand forecasting techniques based on soft computing 
methods are gaining major advantages for their effective 
use. The use of deep learning techniques has grown with 
the rise in computational power and the availability of 
big data [7]. RNN-LSTM models are used to model 
sequential data, such as time series data, as they store 
contextual information from past inputs. For predicting 
future load based on nine years of historical data, the 
results show that deep learning could predict the load 
demand more accurately than SVM and RF [8]. 

In the context of climate change, the temperature-
power consumption response function in Beijing was 
evaluated, and power consumption was predicted in the 
next 40 years under different shared socio-economic 
paths (SSPS) [9].  

Statistical and machine learning models used for 
long term load forecasting use different input features 
such as socio-economic factors e.g. GDP, population, 
historical electricity demand, etc., and weather features 
e.g. temperature, humidity, and wind speed for long 
term forecasts. In this paper, a decade long new data set 
of a large utility at hourly resolution is used for long term 
load forecast. Using historical electricity load and 
weather variables as input features, we have compared 
three models based on their respective MAPE values.  
The rest of the paper is structured as follows: In Section 
2, Data description and selection of models, input 
features, and performance measures are described. 
Section 3 describes the complete methodology, from 
feature engineering to training of the proposed model. 
Subsequently, the performance metrics have been 
included in Section 4. This has been further illustrated 
with plots. The paper has been recapitulated in Section 5 
and potential future works are also described.   
          
2. Data Processing 

This section comprises data description Section 2.1 
which identifies the data type, resolution, and 
processing. The selection of input features, models, and 
performance measures is described in Section 2.2 

 
2.1. Data Description 

We have gathered historical electricity load data 
at hourly resolution, of a large utility, Lahore Electric 
Supply Company having presently 6464887 customers, 
from 2013 to 2023. The unique aspect of this research is 
that this data is being used for the first time in any 
research. The values of electricity load are actual 
consumption values recorded at hourly resolution and 
not the true electricity demand values. This happened 
due to forced and planned load management from 2013 
to 2023 in the region under study. Observing the 
behavior of load patterns over a decade, we can see that 
load has a large variation during the year. Hourly load 
varied from 354 MW to 5503 MW in 2023. Peak load 
occurs in summer due to the addition of air conditioning 
load. 

 

Figure 1 Load Profile- 2023 

The decade long electricity data was supposed to 
be influenced by global climate change impact over the 
past decade. For incorporating climate change impact of 
weather on electricity usage, weather data of the same 
region, same period, and resolution as of electricity load 
data was downloaded online from a weather API by 
providing latitude 31.1072 and longitude 73.32542. The 
weather features downloaded were temperature at 2 m 
(℃), relative humidity at 2 m, dew point at 2 m (℃), 
apparent temperature( ℃) , rain(mm),     
precipitation (mm), cloud cover, wind speed at 10 m 
(km/h), wind speed at 100m (km/h) [10]. Based on P 
values of Pearson correlation of these weather 
parameters with hourly load over a decade, we have 
selected 3 weather variables having the highest 

file:///C:/Users/cs/Desktop/Load%20Profile%20of%202023%20(2).html
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correlation namely apparent temperature ( ℃ ), 
temperature at 2 m (℃) and dew point (℃). 

The load data collected was mostly clean, 
however, there were some zeros, duplicate values, and 
missing values in the data set. Duplicate values were 
removed, zeros and and missing values of hourly 
electricity load for approximately 4 months from 18th Sep 
2015 to 15th Jan 2016 were filled by two methods. The 
first method MVFill_1 fills hourly load missing values 
based on corresponding apparent temperature values. 
Apparent temperature has the highest correlation with 
load among all weather variables. The value to be filled 
against the missing load value is calculated by taking the 
mean of all values of hourly load in the whole data set of 
more than 10 years at the same apparent temperature 
value as the missing load value. The second method 
applied to fill in missing load values uses ARIMA lag 
regression and Kalman smoothing to fill in missing values 
of electricity load.  

For all the models, 70% of the data is used for 
training and 30% for testing.  

2.2 SELECTION OF MODELS, INPUT FEATURES AND 
PERFORMANCE MEASURES  
 
The research community uses different models, 

input features, and performance measures to forecast 
electricity load. Energy demand models can be classified 
in several ways such as static versus dynamic, univariate 
versus multivariate, and time series versus hybrid models 
[11]. These models can also be differentiated based on 
different input features, modeling methods, and 
performance measures. There is a research gap in using 
any scientific methodology for choosing forecasting 
models, input features, and performance measures. We 
have observed that any set of models, features, and 
performance measures are selected on a hit-and-trial 
basis. To fill this research gap, we have used the ABC 
classification technique for the selection of models, input 
features, and performance measures based on 35 latest 
relevant research papers. There are three classes, A, B, 
and C each for forecasting models, input features, and 
performance measures. The criterion chosen for 
classification is that Class A contains 70 %, class B 
contains 20% and Class C contains 10% of modeling 
techniques used in the literature. The same criterion is 
used for the classification of features and performance 

measures. As a first step based on this scientific 
methodology, we have selected the most widely used 
models and performance measures from Class A for our 
research. We have selected SVM, LM, and LSTM as the 
most commonly used modeling techniques in the 
literature. We have compared LM, a statistical method, 
SVM, a machine learning method, and LSTM, a deep 
learning method. Due to the complexity of the problem 
in long term forecasting involving weather, 
socioeconomic and other factors, time series analysis can 
be applied. Linear Regression (LR) is the earliest form of 
least-squares estimation in classification [12] and has 
been used extensively for long term load forecasts. 
Support Vector machine is based on statistical learning 
theory [13]. In SVM, the empirical risk minimization 
principle employed in Artificial Neural Networks is 
replaced by the structural risk minimization principle. 
SVM is equivalent to solving a linear constrained 
quadratic programming problem having a unique and 
globally optimal solution [14]. LSTM was introduced as a 
more efficient architecture compared to traditional 
RNNs addressing the problem of vanishing gradient [15]. 
Recurrent Neural Networks (RNNs) are one of the most 
widely used models for performing time-series 
predictions. However, they suffer from an inherent 
problem of vanishing gradient descent. To overcome this 
problem and additionally formulate long term 
dependencies between training samples, LSTM-RNN is 
used which significantly increases the precision of the 
proposed model [16].  

The performance measures used by researchers 
most frequently are MAPE, RMSE, and MAE 
subsequently. For this research, we have used MAPE as 
a performance measure to compare models with 
different sets of input features. 

Similarly, a large variety of input features have been 
used in literature, like previous electricity consumption 
at different aggregation levels e.g. monthly load, daily 
load; weather features e.g. mean temp, wind speed, 
cloud cover, etc. and socio-economic features such as 
GDP, population, etc. The input feature most frequently 
used in literature is daily electricity load, however, we 
have not used daily load as input, instead, we have used 
historical load at hourly resolution as the input feature. 
With the growing shift towards renewable energy 
generation and greater integration of electricity into 
primary energy consumption, the necessity for higher 
resolution of precise long-term load forecasting is 
essential [17]. This selection was made due to the 
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increasing trend in future load demand variations [18]. 
This is happening due to the climate change 
phenomenon and rapidly changing socio-economic 
factors [19]. In this scenario, electricity service providers 
can get better insight from hourly resolution of forecast 
for better decision making to use their money wisely. 
Features are selected not only based on the most 
frequently used features by the researchers but also on 
the correlation value with electricity load. The electric 
load of previous hours in MWs is selected based on 
autocorrelation values.  
 

 
Figure 2  ACF graph of hourly load (MW) 

We have selected the previous hour load namely 
Lag_h1, one hour before previous hour load as Lag_h2 
and 3 hours earlier load as Lag_h3. Similarly, 24h ago 
load is taken as Lag_24h and one week ago load as 
Lag_168h. ACF graph is shown in Figure 2. 
As per ABC classification, Mean, max, min temp, and 
wind speed are among the most used weather features 
of class A. However, we have used Pearson correlation 
values of weather features with electricity load for 
selection of weather features for this research. Three 
weather variables with the highest correlation values are 
selected as input features for this research and are 
shown in Figure 3. The apparent temperature has 0.648, 
the temperature has 0.606, and the dew point has 0.577 
correlation values with load. All other weather variables 
have less than 0.16 correlation values with load, relative 
humidity has -0.15, rain and precipitation have 0.03, 
cloud cover has -0.006, wind speed at 10 meters has 0.12, 
and wind speed at 100 m has 0.13 correlation value with 
the load.   

Year-wise correlation values of selected features 
are also shown in Figure 4, the values vary from 0.53 for 
the dew point in 2022 to 0.82 for the apparent 
temperature in 2019. 

We can see that correlation values of selected 
variables also show a strong correlation with load on a 
yearly basis for the past 10 years, averaging at 0.7.  

 
 

 

 

 
Figure 3 Apparent Temperature, Temperature, and Dew point graphs 

respectively have highest Pearson correlation with load 

 
machines, and long-short-term-memory network based 
Recurrent Neural Network (LSTM-RNN) model for 
forecasting electricity demand for a period of three 
years. LM assumes a linear relationship between input 
features and can underfit if the true relationship is non-
linear. LM is sensitive to outliers. This model is the 
simplest to apply among the three models and requires 
less time to train the data. LM assumes that features are 
independent.  

SVM is computationally expensive compared to 
LM. SVM can overfit with small data sets and can perform 
poorly with large data sets in terms of speed and 
memory usage. SVM is sensitive to noisy data [20]. The 
application of SVM and LM was easy, however, the 
parameters setting for the LSTM model application was 
not simple. LSTM model is applied for time series data 
and has advantages in managing complex or non-linear 
patterns in electricity data. Having smaller training data 
sets compared to model complexity or choosing too 
many lag values for forecasting can cause the overfitting 
problem in LSTM. Too many epochs can cause overfitting 

file:///C:/Users/cs/Desktop/Drawn_vs_Temperature%20of%202013-2023.png
file:///C:/Users/cs/Desktop/Drawn_vs_Apparent_Temperature%20of%202013-2023.png
file:///C:/Users/cs/Desktop/Drawn_vs_DewPoint%20of%202013-2023.png
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whereas not training the model for enough epochs 
results in underfitting [21]. 

 
The parameters used for LSTM are mentioned in Table 1.  
 

Parameters Layer 1 Layer 2 
Layer type Bidirectional LSTM Dense 
Nodes 32  

Activation Tanh  Linear 
Output Size  1 
   
Optimizer ADAM 

Epochs 40 
Batch Size 100 
  

        
Table 1 LSTM model parameters 

LSTM model parameters can be further tuned for improved 
results. The optimal number of time lags and LSTM layers can 
be selected using GA.  

 

 
   Figure 4  Year-wise correlation of selected weather features. 

Each model has 2 variants of results based on 2 
different techniques to fill in missing values in the data 
set of electricity load. Thus 3 models have 6 variants. 
Each variant has further 5 types of output based on 
grouping of selected input features. The variables 
selected as input features are based on Pearson 
correlation values. 

We have selected two types of input features: 
historical load values and weather variables. We have 
also selected 3 load values at the previous three hours, 
load at a day ago hour, and load at a week ago hour i.e. 
Lag_h1, Lag_h2, Lag_h3, Lag_h24, and Lag_h168. The 
other type of input feature is hourly weather variables: 
temperature, apparent temperature, and dew point. 
These two types of features are grouped into five groups 
of features.  

Group1 has only 3 weather variables i.e. 
temperature, apparent temperature, and dew point, 
Group2 has 3 lag values of electricity load with the 
highest correlation i.e. load values at each of the 

previous 3 hours, Group 3 has 5 lag values of load having 
the highest correlation with load i.e. Lag_h1, Lag_h2, 
Lag_h3, Lag_h24 and Lag_h168, Group 4 has all features 
of Group1 and Group2 and Group5 has all the three 
weather variables and 5 lag variables as input features. 
The total number of input features in each group is also 
different. Group1 and 2 have 3 input features, Group3 
has 5, Group4 has 6 and Group5 has 8 input features. 
Thus, each of the 3 models has 2 variants and each 
variant is further divided into 5 subtypes. Accordingly, 
error estimation based on MAPE values for all the 10 

0
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  SVM   LM  LSTM 
Feature 
Groups 

Input Features MVFill_1 MVFill_2 
 

 MVFill_1 MVFill_2  MVFill_1 MVFill_2 

Group1 Temp_h0, App Temp_h0, Dew Point_h0 23.03 23.31   22.60 22.95  9.35 12.04 
Group2 Lag_h1, Lag_h2, Lag_h3 

 3.15 3.06   3.45 3.25  6.78 6.69 

Group3 Lag_h1, Lag_h2, Lag_h3, 
Lag _h24, Lag_ h168 

3.09 3.00     3.41 3.19  8.08 7.53 

 
Group4 

 
 
Lag_h1, Lag_h2, Lag_h3, Temp_h0, 
App Temp_h0, Dew Point_h0 
 

3.09 3.03   3.29 3.13  7.43 8.54 

Group5 Lag_h1, Lag_h2, Lag_h3, Lag _h24, 
Lag_h168, Temp_h0, 
App Temp_h0, Dew Point_h0 

3.03 2.98   3.23 3.08  8.77 7.57 
 

 
           

Table 2 Comparison of SVM, LM, and LSTM based on MAPE value for all groups of features. 
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versions of each of the 3 models is presented in Table 2. 
The forecasted values are hourly electricity load values 
which are more useful for utilities in present times where 
abrupt changes occur at more frequent rates. 
 
3 Results and Discussion 

 
Comparing MAPE values in Table 2 for 3 models, it 

can be observed that the results of SVM are better than 
other techniques LM and LSTM for input features groups: 
Group2, Group3, Group4, and Group5. The best 
performance of the SVM model with the lowest MAPE 
value of 2.98 is for Group5 input features and with the 
MVFill_2 technique to fill missing values. It means for 
long term load forecasts; utilities must consider weather 
features with the highest correlation with load along 
with a load of the previous three hours, load of one day 
before, and a week ago load. It is also shown that for any 
missing historical load data, ARIMA lag regression along 
with Kalman smoothing gives better estimated values.  
The climate change impact incorporated by considering 
most correlated weather variables for the past decade 
has shown improvement in forecasted load values. 
Considering missing values fill techniques, for LM and 
SVM, results have much resemblance of pattern as for 
input features groups; Group2, Group3, Group4, and 
Group5, MVFill_2 performed better than MVFill_1. 
Whereas, for Group 1, the MVFill_1 technique 
performed better than the MVFill_2. 

Group 1 which contains only 3 weather variables, 
and no electricity load lag variable has shown very 
interesting results. All modeling techniques performed 
better with MVFill_1 compared to MVFill_2. If we 
compare the results of SVM and LM with LSTM for Group 
1 only, we can see that LSTM performed 2.5 times better 
than both classical techniques for MVFill_1, and for 
MVFill_2, LSTM results are about 2 times better than 
classical techniques. This means if we do not need to give 
load lag values as input features to predict future load 
values then LSTM gives better results than other 
techniques.  

When we compare the results of different input 
feature groups (except group 1) and missing value fill 
techniques for SVM and LM, it is obvious that results are 
not very elastic for any group of input features and 
missing value fill techniques. MAPE values of all the 15 
variants of SVM range from 2.98 to 3.15 whereas for LM, 
it ranges from 3.08 to 3.45. The most interesting result of 
this study is that in Group 1 where only three highly 

correlated weather features are taken as input, without 
considering any value of historical consumption, LSTM 
resulted in a 9.35 MAPE value which is about 2.5 times 
better compared to LM and SVM. This indicates that 
LSTM outperforms the best techniques reported in 
literature if we only take weather variables as input 
features. We can say that for the purpose of studying 
only the climate effects of weather on electricity load 
without giving additional features of historical 
consumption as input, LSTM is far ahead of other 
techniques reported in the literature. So, we can train 
our model only on three highly correlated weather 
features and can forecast future load with a 9.35 MAPE 
value at hourly resolution. 

For example, when we forecast two years ahead 
load, we need future loads at all hours till 2 years which 
involves inaccuracies and errors. If we do not need that 
load and can forecast our future load which is not in 
the near future, by providing weather variables, errors 
and inaccuracies of only the weather variables involved 
will affect the forecasted load results. Simply, we do not 
require forecasted electricity consumption data for long 
term forecasts of years ahead. Without considering any 
feature of historical electricity load, LSTM has 
outperformed LM and SVM with significant difference in 
MAPE values. 

 
 

Figure 5 Actual vs Forecasted Load 

3. Future Work 

The work presented here was aimed at long term 
load forecast, however, it can also be used for short time 
horizons. As we have presented our work in hourly 
resolution, we can forecast the load of the next hour, two 
hours, three hours, and so on which means we can 
predict the load of the next hour which is short term load 
forecasting. Similarly, we can forecast load at any hour 
after one month or after more than one month which is 

file:///C:/Users/cs/Desktop/Actual%20vs%20Forecasted%20Load%20of%20SVM%20with%20all%20decided%20features%20tech%203%20(2).html
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termed as medium term load forecasting. This shows the 
same study can be used for short term and medium-term 
forecasting as well. The results can be improved by 
considering socio-economic variables as input features. 
The socio-economic variables could not be considered 
input features in this research as only a single value of 
GDP and population was available for the region under 
study for the past decade. However, the results can be 
improved if socio-economic data is made available at a 
greater resolution. Since this research was conducted 
with data at hourly resolution, we assume that GDP and 
population data could not be made available at one-hour 
resolution, so we can take the mean of hourly loads and 
weather variables for monthly or annual values to 
incorporate those socio-economic variables. We can 
further improve the results by assigning appropriate 
weights to historical load and weather variables based on 
the time gap between the input variables and the 
forecasted load.  
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