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ABSTRACT 
 The goal of concurrently addressing green 
transformation (GX), in this study, we aimed to reconcile 
exploring regional optimization in smart grids and 
renewable energy variability in Hitachi, Japan. The 
breakdown of CO2 emissions among Hitachi City's sectors 
was estimated because of the lack of detailed data in the 
Ministry of Environment's Municipal Emissions Carte. To 
foster GX, solar power generation using renewable 
energy are unstable because they are affected by the 
weather, and depending on the scale of installation, EVs 
are equipped with storage batteries, and depending on 
the time of day, they can be charged as a buffer for 
surplus electricity from renewable energy.  If Hitachi 
City were to install about 1,000MW of solar panels, it 
could become a zero-carbon city by 2050.   
 
Keywords: GX, Zero-Carbon City, Energy consumption,  

EV, Local government  

INTRODUCTION 
The Green Transformation (GX)1) aims to change 

the global social structure towards achieving carbon 
neutrality by 2050. With Europe mandating EPDs 
(Environmental Product Declarations) 2) for the 
construction industry, particularly through EN15804, the 
importance of lifecycle assessment for ZEB (Zero Energy 
Building) and ZEH (Zero Energy House) in new 
construction projects is being emphasized not only in 
Europe but also in the Americas and Asia. Furthermore, 
the investment objectives of ESG (Environmental, Social, 
Corporate Governance) have expanded to include the 
introduction of renewable energy into existing buildings, 
contributing to local revitalization efforts in Japan amidst 
declining population. The significance of information 
systems, particularly those managed by municipalities 
involving citizens, energy managers, and infrastructure 
providers, is increasing, particularly for advanced 

utilization (CO2 emissions visualization). For instance, 
efforts regarding ZEB/ZEH in new construction projects 
have been summarized by Paolo Olasolo-Alomso et al.3), 
who reviewed the impact of EPBD energy performance 
indicators in Southern European countries like Spain and 
Italy. Additionally, embodied carbon assessments, 
including LCA evaluations, have been categorized by 
Ruijiun Chen et al4). and Gnaga A. Warrier et al.5), with 
Egle Klumbyte et al.6) attempting to integrate BIM-LCA 
and constructing digital twin technologies. U.G.D. 
Madushikara et al.7) categorized GHG assessment 
methods for existing buildings based on economic 
factors of developing and developed countries into five 
categories: (1) performance evaluation, (2) performance 
optimization, (3) adoption, (4) policies and incentives, 
and (5) stakeholder engagement. Related to (1) and (2), 
Krithika Panicker et al.8) examined the balance between 
energy demand and solar panel output installed on 
rooftops of existing residential buildings in India, 
considering the impact of COVID-19 using real data 
through Energy Performance Index (EPI) and Energy 
Generation Index (EGI). Giuseppe Aruta et al.9) reported 
that the investment costs increase by €150 to €200 per 
square meter with the increase in sustainability when 
considering the installation of solar panels on buildings 
aiming for sustainability as the goal of smart grids. Zhang 
Deng et al.10) developed Auto mated Building 
Performance Simulation (AutoBPS) using building 
information from GeoJSON files to conduct energy 
efficiency and PV installation considerations from 
individual building simulations to city-scale energy 
simulations based on 3D information of 3633 buildings in 
Changsha, categorizing the analysis by building types 
such as residential, office, and hotel but lacking data for 
hospitals, schools, and mixed commercial facilities. 
Myeong-in Choi et al.11) constructed a system for regional 
energy optimization using AI based on Weather Index 
(WI) such as sunny and cloudy conditions, in addition to 
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constructing energy visualization systems for energy 
managers, aiming to utilize information systems 
extensively. Arva Arsiwala et al.12) developed a 
visualization system for 3D building information using 
small sensors to measure real-time temperature, relative 
humidity, and CO2 concentration in living rooms, 
kitchens, and bedrooms per household, verifying 
accuracy with predictive models. Georgios Chantzis et 
al.13) are considering achieving decarbonization from 
both electricity and heat using demand response 
functions, indicating the energy transition goals that 
various European countries should aim for. Seyeh 
Niloufar Mousavi et al.14) consider the introduction of 
adaptive technologies such as rooftop greening to 
improve comfort as part of GX technologies, which also 
encompass the pursuit of well-being.  

In Japan, the installation of PV panels on existing 
building rooftops is often challenging, leading to 
considerations for installation in fields, parking lots, etc. 
It is necessary to consider not only energy self-sufficiency 
at the building level but also at the community level. 
Additionally, forecasting outdoor environments can 
improve the accuracy of predicting indoor environmental 
behaviors, making it crucial to disseminate information 
to citizens regarding heatstroke prevention during high 
temperatures, preparation for typhoons, and changes in 
behavior during snowfall when considering the balance 
between energy demand and renewable energy 
introduction. Therefore, this study conducted an 

examination on the advanced utilization of information 
systems, including CO2 visualization of energy demand 
and PV introduction, and the comfort of outdoor 
environments, as part of the broader GX technological 
development unique to Japan.  

The Japanese government is simultaneously 
promoting both the Ministry of the Environment's 
"Regional Decarbonization Roadmap"15) and the Cabinet 
Office's "Digital Agrarian City National Concept"16). Local 
governments, except for Ibaraki Prefecture, that 
declared their intention to achieve nearly zero carbon 
dioxide emissions by 205017) cover over 90% of the total 
population across all prefectures (as of the end of 
December 2023). Furthermore, on 21 December 2023, 
Hitachi City and Hitachi, Ltd. concluded a comprehensive 
cooperation agreement regarding a co-creation project 
aimed at realizing a "next-generation future city (smart 
city)" utilizing digital technology.  

In this report, based on the example of CO2 
emissions in Hitachi City, we introduce initiatives for 
understanding the breakdown of CO2 emissions and 
promoting GX for stakeholders and citizens. We hope 
that these efforts, including the introduction of 
renewable energy and the promotion of decentralized 
energy spread, such as by employing smart grids, will 
contribute to achieving a zero-carbon city by 2050.  

1. MATERIAL AND METHODS: LOCAL GOVERNMENT 
INITIATIVES TOWARD A ZERO-CARBON CITY 

 Hitachi City declared 
the Hitachi Zero-Carbon 
City vision in March 
2022 and formulated 
the 3rd Hitachi City 
Global Warming 

Countermeasures 
Implementation Plan 
(Regional Policy 
Section) 18) in March 
2023. 
 
1.1 Ministry of the 
Environment's Values 
Published in "Municipal 
Emissions Carte" 

The CO2 
emissions of 
municipalities were 
reported based on the 
"Municipal Emissions 
Carte"19) 20) 21) published 
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※ Source of sectoral indicators
Manufactured product shipment value, etc. (manufacturing industry): Industrial statistics survey
Number of employees (construction/mining, agriculture/fisheries, commercial and other sectors) ：economic 
census(Statistics Bureau of Japan)
Population, vital statistics and number of households survey based on the Resident Registration System (Ministry of 
Internal Affairs and Communications)
Number of cars owned (transportation sector) ： Automobile Inspection and Registration Information Association 
“Number of Cars Owned by Municipality” and National Federation of Light Motor Vehicle Associations “Number of 
Light Motor Vehicles by Municipality”
Gross tonnage of ships entering the port (vessels) ： Annual port survey report

Fig. 1 Hitachi City CO2 emissions calculation flow 
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by the Ministry of the Environment, following policy 
formulation for decarbonization, with implementation 
reports for fiscal year 2023. The estimated flow (Fig. 1) 
and values (Fig. 2) of CO2 emissions in Hitachi City are 
shown. 

In this study we estimated the breakdown of 
emissions among various sectors. 
 
1.2 Industrial Sector in Hitachi City 

The CO2 emissions from the industrial sector in 
Hitachi City account for approximately 70% of total 
emissions (Fig.2). After requesting the Ministry of the 
Environment to disclose CO2 emissions from specific 
emitters, it was found that specific emitters account for 
about 50% of the industrial sector, and that there is a 
decreasing trend in their workforce. These emissions are 
calculated based on the amount of manufactured goods 
shipped within the city and are thus influenced by 
corporate economic activities. 

Currently, the development of a factory model 
has been initiated through a collaborative research effort 
between Hitachi, Ltd. and Ibaraki University.  
 
1.3 Residencial, Commercial and Other Sectors of 
Hitachi City 

Emissions from the commercial and other 
sectors of Hitachi City's specific emitting businesses 
amount to 138.8 thousand tons of CO2 (68 thousand tons 
from public offices, 8.2 thousand tons from hospitals, 2.9 
thousand tons from universities, etc.). This constitutes 
half of the CO2 emissions in the commercial and other 

sectors, totaling 271 thousand tons (Fig. 2) as per the 
Ministry of the Environment's published data, with an 
unknown breakdown. Hence, by comparing the 
estimated CO2 emissions (Table.1) obtained by 
multiplying the annual energy consumption per unit of 
use by the floor area and the Ministry of the 
Environment's published data, a total of 292.5 thousand 
tons of CO2 emissions was obtained, closely matching the 
assumption. The total floor area was determined from 
the Zenrin building point data (2022) in Table 1. 
 

Table. 1 Estimated breakdown of CO2 emissions in 
Hitachi City commercial and other sectors 

 
 
2.  ATTEMPT for GX VISUALIZATION  
2.1 Adaptation of Evaluation Methods for GX 

From annual CO2 emissions determined using 
Zenrin's 2022 building point data 23) (Fig.3), we 
constructed a visualization system with QGIS 
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(Ver3.22.11) for heatmap functionality to visualize 
energy consumption units by building usage and floor 
area for each sector breakdown (see Table 1 for the 
commercial sector and Figure 4 for the household sector) 
in FY2020. Our aim is to progressively expand the 
information system to include data on the industrial 
sector, transportation sector, waste management sector, 
and the introduction of renewable energy. 
 
2.2 Estimation for the Introduction of Renewable Energy 

We calculated the monthly solar power 
generation capacity for Hitachi City based on data from 
the "Hitachi City New Energy Vision" 24) formulated25) in 
2017. Assuming 18.2 MW of solar power from mega solar 
and 6 MW from roof installations on residential 
buildings, we calculated the monthly solar power 
generation for Hitachi City as a whole (Fig.4). 

 

 
Fig.4 Monthly solar power generation for Hitachi City 

 In 2017 

 
Table. 2 Setting for heating and cooling demand of COP  
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Fig.3: Attempt to transform Hitachi Zero-Carbon City GX in QGIS Ver3.22.11 
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Fig.5 Monthly average daily power demand by time of 
day for Hitachi City in 2017 
 

 
Fig.6 Monthly electricity demand for Hitachi City in 2017 

Hitachi City's solar power generation accounts  

3. RESULTS 
If Hitachi City were to install about 870,000 kW of 

solar panels, it could become a zero-carbon city by 2050 
(Fig.7). 

 
Fig.7 Predicted monthly solar power generation for 
Hitachi City in 2050 

4. DISCUSSION 
It has been found that to make the entire city of 

Hitachi zero-carbon, large-scale solar panels and other 
renewable energy sources will be required. Therefore, it 
is necessary to consider the balance between demand 
and supply of storage batteries by increasing the number 
of EV vehicles, and to consider the uncertainty of energy 
supply, which is affected by weather conditions. It was 

also found that the updating of gas-based systems 
through the diffusion of carbon recycling technologies 
such as hydrogen and methanation is also urgently 
needed. 

5. CONCLUSIONS 
In this study, we estimated the CO2 emissions 

breakdown among sectors in Hitachi City using various 
statistics. We also verified the capability of the energy 
calculations and visualized annual values for the entire 
city using the heatmap functionality in QGIS. 

To attempt to reconcile data with estimations, we 
estimated the energy consumption by building usage on 
an hourly basis and continue to explore regional 
optimization in smart grids and the hourly variability of 
renewable energy balances. If Hitachi City were to install 
about 870,000 kW of solar panels, it could become a 
zero-carbon city by 2050 without the industry sector. We 
aim to simultaneously address GX and disaster response 
scenarios. Using renewable energy are unstable because 
they are affected by the weather, and depending on the 
scale of installation, EVs are equipped with storage 
batteries, and depending on the time of day, they can be 
charged as a buffer for surplus electricity from renewable 
energy. We aim to simultaneously address GX and 
disaster response scenarios installing EVs. Furthermore, 
predictive control for operational optimization based on 
weather forecasts would being conducted using data 
from satellite images and observation values obtained in 
real time for the future.  
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