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ABSTRACT 
 

Data centers are energy-intensive infrastructures 
that generate, manage, and store information for our 
interconnected society. Models based on Artificial 
Intelligence (AI) such as ChatGPT are increasingly 
accessible, leading to significant energy consumption 
and associated carbon emissions.  

Assessing the carbon footprint of AI data centers is 
essential for evaluating their environmental impact and, 
consequently, promoting responsible AI development 
and encouraging sustainable practices. In this work, we 
evaluate an AI data center's carbon footprint using a life 
cycle assessment approach. Unlike existing literature, we 
analyze the entire data center architecture rather than 
solely focusing on the servers’ footprint. Additionally, we 
assess the impact of varying the electricity mix and 
extending the lifetime of servers, providing potentials for 
emission reductions. 
 
Keywords: Data center, Life Cycle Assessment, Carbon 
emission, Sustainable AI 

1. INTRODUCTION 
 
Data centers are critical infrastructures supporting 

the exponential growth in data generation, particularly 
in Artificial Intelligence (AI) and High-Performance 
Computing (HPC). AI data centers are designed to handle 
high computation demands and feature advanced 
hardware like GPUs or TPUs, with high rack densities. 
These facilities are essential for a wide range of 
applications, from data storage and processing to the 
complex computations required by AI models training 
and scientific research. Global data creation is projected 
to rise from 1.2 trillion gigabytes in 2010 to 175 trillion 
gigabytes by 2025 [1], highlighting the need for robust 
data center operations. Additionally, reports by the IEA 
showed that the global energy consumption for data 
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centers could more than double from 460 TWh in 2022 
to 1000 TWh by 2026, with countries like Denmark 
potentially experiencing increases up to 15% of their 
total electricity use [2,3]. 

The importance of assessing the environmental 
impacts of data centers is underscored by their 
significant energy consumption and carbon emissions. 
Evaluating these impacts is critical not only for reducing 
carbon footprints but also for achieving sustainability 
goals set by major internet giants and data center 
operators. Companies like Google and Microsoft have 
pledged to match 100% of their hourly electricity 
consumption with zero-carbon energy purchases [4,5], 
and Amazon aims to be carbon neutral by 2040 [6]. 
Additionally, to get on track with the Net Zero Scenario 
defined by the IEA, emissions of data centers must be cut 
in half by 2030 [7]. These commitments reflect a broader 
industry trend towards sustainable practices, 
emphasizing the urgent need for comprehensive 
environmental assessments to guide these efforts and 
promote green technologies and practices. 

The literature provides comprehensive 
methodologies for assessing the environmental impact 
of data center architectures, emphasizing both 
operational and embedded emissions. 

Embedded emissions include the environmental 
footprint of manufacturing data center hardware. In Life 
Cycle Assessment (LCA) methodologies they are 
commonly used to evaluate these impacts. For example, 
the ACT framework proposed in [8] based on the work 
done in [9] for the case of processors provides a detailed 
model for estimating the embodied carbon footprint of 
processors and other key server components based on 
workload characteristics, hardware specifications, and 
semiconductor fab characteristics. This model has been 
the basis for calculating the embedded emissions for 
CPUs, GPUs, DRAM and storage in various studies 
[10,11]. However, current assessments often overlook 
other hardware components such as cooling systems, 
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which can be significant contributors to energy 
consumption and emissions. 

The operational carbon footprint focuses on the 
energy consumed during the use phase. Tools like 
Carbontracker [12] enable real-time monitoring of 
energy consumption and carbon emissions for training 
Deep Learning models. Studies highlight the importance 
of considering the carbon intensity of the energy source, 
with renewable energy sources significantly reducing 
operational emissions. For instance, [13] emphasizes 
detailed reporting of energy consumption and suggests 
strategies for reducing emissions, such as optimizing 
server utilization and improving cooling efficiency. 
However, these studies often focus on the carbon 
footprint of servers, excluding other significant 
contributors like cooling and power systems. 

The literature advocates for a holistic approach, 
integrating both operational and embedded emissions. 
Studies such as [14] and [15] argue that achieving 
sustainability requires considering the entire lifecycle of 
data center components, including emissions from 
manufacturing, transportation, usage, and disposal. 
Innovative strategies such as carbon-intensity-aware job 
scheduling are also explored to reduce the overall carbon 
footprint [16,17]. 

In this paper, we focus on LCA for AI data centers. 
Evaluating their environmental impact is crucial to 
promoting responsible AI development and encouraging 
sustainable practices. As an example, we mention the 
examples of two Large Language Models (LLMs): GPT-3 
and BLOOM. These AI models require vast computational 
resources, leading to substantial energy consumption 
and associated carbon emissions. In [18], it is shown that 
the carbon footprint of LLMs is heavily influenced by the 
energy source’s carbon intensity. For instance, training 
GPT-3 resulted in emissions of approximately 552 tons of 
CO2eq, mainly due to the high carbon intensity of the 
energy grid used. In contrast, BLOOM’s training 
emissions were significantly lower at 30 tons, benefiting 
from the lower carbon intensity of the French energy 
grid. These comparisons illustrate the potential for 
significant emission reductions by selecting energy-
efficient infrastructures and cleaner energy sources. 
 

In this paper, we propose using LCA to take a 
comprehensive approach to analyzing the carbon 
footprint of AI activities. The detailed nature of LCA 
facilitates a holistic understanding of AI-related carbon 
footprint assessments. In our study, we consider the 
broader implications of carbon footprint exercises, 
examining the impact from the perspective of entire data 
center architecture rather than solely focusing on the 
servers' footprint. 

 
2. DEFINITION & SCOPE 

 
The assessment was done based on a reference 

design, published by Schneider Electric, dedicated to AI 
applications [19]. The architecture is a 3.6MW data 
center, comprised of 2 IT rooms – one AI cluster, and one 
retrofitted room with an AI cluster installed with IT room, 
and equipped with Nvidia’s H100 GPU. The methodology 
for this study is structured according to the phases of an 
LCA ensuring a comprehensive evaluation of the carbon 
emissions associated with an AI data center. 

The system boundaries are defined as follows: the 
assessment encompasses the entire lifecycle of the data 
center, including manufacturing, operational, and end-
of-life phases. The components considered within the 
boundaries include IT equipment (servers, storage, 
networking), cooling systems, power infrastructure, and 
building infrastructure. Components that comprise a 
data center are complex and usually the bill of material 
are not publicly shared, making LCA analysis a tedious 
process for researchers. However, companies have 
adopted various strategies to assess the carbon 
footprints of their products, by using methodologies to 
assess the environmental footprint of their components. 
Two main methodologies exist: 1) developed by the MIT 
(PAIA method) the Product Carbon Footprint (PCF) [20] 
which is used by companies such as HP, Apple or Dell, 2) 
developed by the PEP Ecopassport institution, the 
Product Environmental Profiles (PEP) [21] are used by 
companies such as Schneider, Legrand or ABB. In this 
work, the analysis integrates detailed emissions data for 
major components based on the PEP and PCF sheets 
available. For components with no PEP or PCF 
evaluation, proxies based on technological 
representativeness are utilized, such as using similar 
components from a competitor e.g., PDU from APC [22] 
replaced by this product from Legrand [23]. Additionally, 
the servers’ values were built from data collected from 
the literature, as no PEP or PCF sheets for servers 
integrating GPUs have been found. The study assumes a 
20-year lifespan for the data center with fixed 
replacement rate values for components, as provided by 
manufacturers.  

For the geographical scope, our results were 
computed for operation in France. However some 
product sheets used a European mix for the use phase, 
and thus were adjusted to match France’s electricity mix. 
We also computed the values for two other regions, 
using the mix of Europe and Germany.  
 
3. LIFE CYCLE INVENTORY ANALYSIS 
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The inventory phase involves the collection and 
quantification of data on all material and energy inputs 
and outputs throughout the lifecycle of the data center 
components (manufacturing, distribution, installation, 
use, End-of-Life (EoL)). These values were collected from 
the collected PEP or PCF sheet, at the exception of the 
servers. For the servers, the values where built from the 
CPU and GPU results found in [8,9], and supported by 
vendor specific values for storage components, and 
DRAM values extracted from [8]. 
 
Manufacturing emissions 

The reference design has two type of servers, one 
focused towards AI, based on NVIDIA’s DGX pod 
configuration with the H100 GPU, and another more 
adapted to regular IT loads. For the AI optimized servers, 
the CO2 footprint for manufacturing is computed as in 
[8], that is: 

 

𝐸𝑝𝑟𝑜𝑐 =  
(𝐹𝑃𝐴 +  𝐺𝑃𝐴 +  𝑀𝑃𝐴) ⋅ 𝐴𝑑𝑖𝑒

𝑌𝑖𝑒𝑙𝑑
     (1) 

 
with Adie the die area, 𝐹𝑃𝐴 the carbon emission per 

unit area related to fab location and lithography, 𝐺𝑃𝐴 
emissions from chemicals and gases per unit area, 𝑀𝑃𝐴 
emissions from raw materials, and Yield the fab yield. 

For regular IT servers, which are assumed to be air-
cooled and have no GPUs, the data is normalized to MW 
based on available data from Lenovo, HP, and Dell [24–
27]. 

 
Operational emissions 

To compute the servers’ operational footprint, it is 
assumed that two states can be taken by a component: 
it is either at its TDP, or at its idle point, which gives the 
following formula based on [28]:  

𝐸𝑂𝑝 = 𝐶𝐹 ∗ ∑ 𝑇𝐷𝑃𝑖 ∗ 𝜂𝑖 + (1 − 𝜂𝑖) ∗

𝑛

𝑖=1

𝑃𝑖𝑑𝑙𝑒    (2) 

 
with n the number of components, TDP the Thermal 
Design Power, ηi the utilization rate of the component 
when active – assumed at 60% at 100% load, Pidle the 
power consumed at idle, and CF the emission factor of 
the country’s electricity mix. The energy mix considered 
in the first case is that of France. For the PEP sheets, use 
phases were adjusted to match France’s emissions 
factor.  
 

Furthermore, certain equipment was not 
considered in this initial assessment. This includes 
pumps, chemical dosing unit for cooling, storage tank, 
air/waste separator, cables, for cooling which were 

excluded due to data unavailability. For the servers, 
switches and connectors were excluded also, because of 
a lack of available data. Future iterations of this analysis 
will aim to incorporate these components to provide a 
more holistic view of the embodied emissions associated 
with data centers.  
 
4. LIFE CYCLE ASSESSMENT & INTERPRETATION 

 
The focus of the current analysis was limited to the 

CO2 footprint. The main reason behind these 
assumptions is that for GPUs, no emission factors other 
than CO2 were found at this stage in the literature. In 
contrast, for CPUs, studies such as the LCA done by Dell 
on a server or this study by the German Environmental 
Agency provides data for up to 5 additional impacts. PEP 
sheets data for cooling and power components can 
provide up to 8 additional impact categories. 
Furthermore, ongoing work at Boavizta aims to expand 
the assessment to include other emission factors in 
future analysis [29] potentially enabling multi-criteria 
assessments for entire AI data centers. Finally, the XRAF 
chiller from Schneider was replaced with that of BCW 
family because of data consistency.  

Figure 1 shows the overall adjusted results, 
considering a 20-year data center lifetime, with 
emissions detailed by component category. The lifecycle 
phases are dominated by the use phase (29%) and 
manufacturing phase (70%). 
 

To better understand what settings could impact 
the total carbon footprint, two cases are analyzed: 
varying the electricity mix and increasing the lifetime of 
the servers. 
 
4.1. Electricity mix variation 
 
The first use case examines the impact of varying the 
electricity mix on the use phase emissions of data 
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centers. The emission factors were adjusted to match 
those of France, Germany, and the average of the 
European Union, based on 2023 data from the Electricity 
Map website [30]. The results are illustrated in Figure 3. 
As anticipated, a lower energy carbon intensity leads to 
a lower overall carbon footprint. A data center located in 
France could potentially achieve a 3.7-fold reduction – or 
76%, in carbon emissions compared to one in Germany, 
primarily due to France's electricity mix, which relies 
heavily on nuclear energy. Given the substantial 
investments by Internet giants in Power Purchase 
Agreements (PPAs) and Guarantees of Origin (GOs) – 
with Amazon and Meta being the top purchasers in 2023, 
accounting for 26% of all PPAs – and the increasing 
regulatory constraints on data centers in Europe, a viable 
strategy from a CO2 viewpoint might be to establish data 
centers in low-carbon regions such as France or the 
Nordic countries. While the electricity mix can influence 
the decision-making process, it is not the sole or decisive 
factor when selecting data center locations. Other critical 
factors such as the reliability of electricity supply, land 
acquisition costs, political stability, and regulatory 
environments also play significant roles in these 
decisions. 

 
4.2. Extending the lifetime of components 
 

The second use case aims to assess the impact of 
extending the lifetime of servers, with results illustrated 
in Figure 2. Here, the indicative lifetime of 5 years is 

extended by 50% to 7.5 years. Increasing the lifespan of 
components reduces the frequency of replacements, 
thereby decreasing embedded emissions. However, this 
comes with a trade-off: future generations of servers are 
likely to be more energy-efficient, potentially lowering 
the carbon footprint of the use phase. Consequently, 
hardware upgrades might therefore be more 
advantageous in regions with higher carbon intensity 
energy sources. However, this does not take into account 
potential additional carbon intensity of new processors. 
Extending the lifespan of servers results in significant 
emissions savings for data centers, with the benefits 
varying by location due to differences in electricity mix. 
For a data center in France, extending the server lifespan 
can save up to 19% of total emissions over a 20-year 
period. For an average European data center, the savings 
amount to 8%, while a data center in Germany sees a 5% 
reduction in total emissions. 

By comparing the reduction in manufacturing and 
end-of-life (EoL) emissions to the use phase, it becomes 
evident that for a data center in Germany, extending the 
server lifetime is beneficial only if the next-generation 
GPU (assuming the same carbon footprint for the 
embedded emissions) is less than 6.1% more energy-
efficient (respectively less 9.7% for a data center using 
the average European mix, and less than 45.7% for one 
in France). However, this analysis does not account for 
potential technological adaptations required or the 
effects on other environmental impacts (not yet 
computed for GPUs). 

Figure 1: Carbon footprint per lifecycle state (left) and system category (right). 

Figure 3 Carbon footprint for different electricity mix scenario Figure 2 Carbon footprint of data centers for different 

countries when increasing server lifetime. 
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5. CONCLUSIONS 

 
This comprehensive Life Cycle Assessment (LCA) of 

an AI data center, based on a Schneider Electric’s 
reference design, is the first LCA done on an AI data 
center architecture. The study also highlights the critical 
influence of the electricity mix on carbon emissions, 
showing a potential 3.7-fold reduction through 
deployment in France compared to Germany due to 
France's reliance on nuclear energy. Moreover, 
extending server lifespans from 5 to 7 years can save up 
to 19% of emissions in France, 8% in Europe, and 5% in 
Germany over the entire lifecycle, yet this must be 
weighed against potential efficiency gains of newer 
hardware that could offset this lifetime prolongation. 
Future analyses should include all relevant components 
and expand beyond CO2 emissions towards other 
environmental impacts.  
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