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ABSTRACT 
 This study evaluates the effectiveness of SHAP 
(SHapley Additive exPlanations) as a feature selection 
tool for national demand forecasting, addressing the 
need for a comprehensive understanding of its strengths 
and limitations. We benchmark SHAP against common 
selection methods, including variance-based selection, 
XGBoost, and NSGA-II. Using a 1D Convolutional Neural 
Network to forecast hourly national energy demand in 
Panama, we compare the performance of features 
selected by each method. Our results indicate that SHAP 
is generally outperformed by XGBoost and may not be 
the most effective initial approach for feature selection, 
nor does it consistently rank features by their predictive 
value. However, SHAP proves more effective in refining 
smaller sets of features, maintaining model accuracy by 
eliminating non-contributive features. 
 
Keywords: feature selection, SHAP, national demand 
forecasting, explainable artificial intelligence  

NONMENCLATURE 

Abbreviations  
 CNN Convolutional Neural Network 
 XAI Explainable Artificial Intelligence 
 SHAP Shapley Additive exPlanations 

1. INTRODUCTION 
Accurate demand forecasting is essential for efficient 

resource management and planning but is complicated 
by various factors such as weather conditions, electricity 
prices, and fluctuating consumer behaviour. Data-driven 
modelling is often used for this purpose, however, these 
models are sensitive to the quantity and type of training 
data. Adding too much information to the model can 
unintentionally include irrelevant or redundant 
variables, leading to long training times and overfitting, 
where the model learns noise instead of the underlying 
patterns. Thus, selecting the right features is crucial for 
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optimal model performance. Feature selection reduces 
data dimensionality, decreases training time, and 
simplifies model complexity, often improving forecast 
accuracy. Moreover, models with fewer features tend to 
be more interpretable [1].  
Despite decades of research, feature selection remains 
challenging, with no single method suited for all 
datasets. Filter methods, which evaluate features based 
on intrinsic data characteristics without a learning 
algorithm, are computationally efficient and ideal for 
large datasets. However, they often miss complex 
feature interactions, leading to suboptimal feature 
selection [1]. In contrast, wrapper methods assess 
features based on their impact on model performance, 
optimizing for accuracy. While this approach generally 
yields highest accuracy, it incurs substantial 
computational costs due to iterative model training, 
making it impractical for high-dimensional datasets[2]. 
Embedded methods integrate feature selection within 
the learning algorithm, balancing accuracy and efficiency 
by directly linking feature importance to model training. 
However, embedded methods are limited to specific 
algorithms, and the selected features may not perform 
well in different models [1]. 

In the emerging domain of Explainable Artificial 
Intelligence (XAI), XAI techniques are also applied for 
feature selection. The core rationale for using XAI in this 
context is its ability to extract the abstract learned 
patterns from the model and identify and quantify the 
importance of each input feature to the model's 
predictions through feature attributions. These 
attributions are scores that indicate the extent to which 
each feature contributes to the model's output. By 
retraining the model using only the features that 
significantly influence its predictions, features with low 
attribution scores can be eliminated without 
compromising the model's accuracy. 
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XAI methods present a compelling alternative to 
traditional feature selection techniques. Unlike 
computationally intensive wrapper methods, XAI 
methods can determine feature importance using the 
model’s learned patterns, significantly reducing 
computation time. Furthermore, since XAI methods 
extract complex feature interactions learned by the 
model, they have been shown to consistently 
outperform filter methods [3][4]. XAI methods are also 
applied directly to the desired forecasting model, 
avoiding the need to train alternative models that might 
not effectively capture the relevant patterns for the 
specific forecasting model. In scenarios such as national 
demand forecasting, where datasets are often 
characterised by high dimensionality, the direct 
application of XAI methods for feature selection has 
demonstrated potential [5]. 

This study focuses on SHAP (Shapley Additive 
exPlanations) [6], a prominent XAI method recognised 
for its strong theoretical foundation in cooperative game 
theory and adaptability to any machine learning model. 
While SHAP has proven to be effective for feature 
selection [5][7][8], its performance in time series feature 
selection and its comparison to meta-heuristic based 
wrapper methods, which typically yield the highest 
model accuracy compared to greed search strategies, 
remain underexplored. Given the high computational 
demand of optimal feature selection, a method that 
approximates the best solution with fewer resources is 
appealing. If SHAP falls short of selecting features that 
produce highly accurate models, it might justify the use 
of more resource-intensive methods or prompt the 
exploration of alternatives. This underscores the 
importance of rigorously evaluating SHAP to ensure 
strategic and justified allocation of computational 
resources in feature selection. 

In light of the growing prevalent use of SHAP as a 
feature selection tool, this study critically evaluates 
SHAP's effectiveness as a feature selection tool for 
national demand forecasting, addressing the need for a 
comprehensive understanding of its strengths and 
limitations. We benchmark SHAP against optimal feature 
combinations, evaluating its overall effectiveness and 
other common selection methods, providing valuable 
insights for researchers designing forecasting models. 
Our novel contributions include: (1) the first evaluation 
of SHAP for feature selection in national demand 
forecasting, (2) pioneering the use of 1D CNNs for 
efficient wrapper-based time series feature selection, 
and (3) assessing SHAP's ability to identify both 
significant and non-contributing features. This research 

enables more informed application of SHAP in 
interpretable machine learning and demand forecasting, 
enhancing model accuracy and interpretability in these 
critical domains. 

2. METHODOLOGY  

2.1 Data processing 

The dataset is augmented to enhance representation 
and increase dimensionality by separating date and time 
into distinct components like hour, day, and month, and 
marking holidays and weekends with binary indicators. 
Weather-related features are added with a 24-hour lead 
time to simulate forecasts, alongside similar series for 
holidays and weekends to model upcoming events. 
Further augmentation includes adding transformations 
such as sinusoidal modifications of periodic features to 
capture cyclical patterns, and differencing all original 
features to introduce redundancy and aid in feature 
analysis. 

For model training and testing, a sliding window 
algorithm is used to create a batched time series dataset. 
The window size is determined by partial auto-
correlation analysis and advances one step at a time. 
Finally, data is vectorized to meet the tabular format 
required by SHAP for analysis 

2.2 Forecasting model - 1D CNN 

Our study uses a 1D Convolutional Neural Network 
(CNN) to model multivariate time series national demand 
data. The architecture begins with a vector input layer, 
reshaped into a 2D array where each feature's time 
series aligns with a CNN channel. The model includes a 
single convolutional layer with filters applied across the 
temporal dimension, a max-pooling layer to reduce 
temporal dimensionality, and fully connected layers for 
prediction. The output layer's neurons correspond to the 
required hourly predictions 

2.3 Feature selection methods 

2.3.1 Variance Method 

The variance method for feature selection evaluates 
features based on their variance within the dataset. 
Features with low variance are considered less 
informative and are removed, while high-variance 
features are retained, as they are likely to provide more 
significant information for the model 

2.3.2 Extreme Gradient Boosting 

Feature selection in XGBoost is based on the 
importance scores assigned to each feature during 
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model training, with gain being a primary metric. Gain 
measures the improvement in accuracy brought by a 
feature to the branches it is on. Features are ranked 
based on their total gain, and the least important ones 
can be removed to enhance model efficiency and reduce 
overfitting. 

2.3.3 SHAP 

This study leverages the SHapley Additive 
exPlanations (SHAP) algorithm to quantify the 
contribution of each feature to model predictions. By 
aggregating SHAP values across multiple predictions, we 
can determine the average contribution of a feature. 

2.3.4 NSGA-II 

Non-dominated Sorting Genetic Algorithm II (NSGA-
II) is a multi-objective optimization algorithm used to 
select the optimal subsets of features and minimise both 
model error (MSE) and feature count. It evolves a 
population of solutions over generations, employing 
non-dominated sorting and crowding distance to 
maintain diversity [9]. The algorithm is implemented 
using the DEAP (Distributed Evolutionary Algorithms in 
Python) framework [10] 

3. CASE STUDY 
This study focuses on forecasting the hourly national 

energy demand in Panama, a tropical country in Central 
America with minor seasonal changes in temperature. 
The dataset includes weather conditions from three 
major cities: Tocumen (near the capital, Panama City), 
David City, and Santiago, and information on public and 
school holidays. The data covers the period from 3 
January 2015 to 27 June 2020, but data from 2020 is 
excluded due to the COVID-19 pandemic's impact on 
energy demand. 

Preprocessing and augmenting the original dataset 
produces approximately 43,200 data points for training 
and testing, comprising 65 input features detailed in 
Table 1. The 1D CNN is trained on data from 2015 to the 
end of 2018. The model inputs consist of a vectorised 
format of a 168-hour look-back window of multivariate 
hourly data with 65 features, used to predict energy 
demand for the next 24 hours. Testing is conducted using 
2019 data, with each test starting at 00:00 to forecast 
demand for the following 24 hours, resulting in 356 non-
overlapping test cases throughout the year. 

The experiments are carried out using Python 3.10, 
Keras 2.8, TensorFlow 2.8.0, and SHAP 0.41.0, run on an 
Intel i9-12900 CPU with 32 GB RAM. To expedite the 
NSGA-II feature selection method, distributive 

computing is employed using 10 computers, each 
running 3 instances of the model training script 
simultaneously, where models are trained using features 
selected by the GA. 

 

Table 1: Description of dataset features. 

Description Feature name Unit/Range 

Demand Demand MW 
Weather features     
Temperature Temp - Toc ˚C 
Relative humidity Hum - Toc % 
Precipitation Rain - Toc liters/m2 
Wind speed Wind - Toc m/s 
Calendar features     
Holiday ID Hol ID [1-22] 
Holiday indicator is hol [0] 
School holiday is scho [0] 
Weekend indicator isweekend [0] 
Date and time 
features     
Hour of day hour [0-23] 
Day of the week dayofweek [0-6] Monday = 0 
Day of month day [1-31] 
Month of the year month [1-12] 
Year year [2015-2019] 
Augmented features     
Lead features Future - [Weather] 
Differenced features diff - [Demand]  
Sinusoidal features cyclic - [Hol ID]   

Toc = Tocumen, San = Santiago City, Dav = David City 

3.1 Computation time 

Table 2 shows the computational time for each 
feature selection method. For SHAP and XGBoost, the 
times include both model training and feature 
importance calculation. The variance method is 
significantly faster due to its simple calculations and lack 
of model training. In contrast, SHAP and XGBoost require 
model training before calculating feature importance. 
For XGBoost, the reported time is mainly for model 
training, with feature importance derived directly from 
the model. SHAP is more time-intensive due to the 
demanding SHAP value calculations. The NSGA-II method 
is the most time-consuming, taking roughly 3 days to 
complete with the aid of distributive computing. 

Table 2: Performance times for different feature 
selection methods. 

Feature selection method Time 

Variance method 32 ms 

XGBoost 8.08 min 

SHAP 14.9 min 

NSGA-II 40.67 days 
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3.2 Performance of selected features 

The performance of the features selected by the 
various methods are presented in Fig. 1. 

Fig. 1 Comparison of the minimum MSE for selected 
number of features. 

Our study found no significant difference between 
SHAP, XGBoost, and the Variance method's selected 
features when using the top 42 to 64 ranked features of 
each method, but differences emerged at 20 features 
and below. The Variance method resulted in the poorest 
model performance, while XGBoost selected features 
generally outperformed those selected by SHAP. 
XGBoost also retained features with significant 
predictive content better than SHAP, particularly at 6 and 
14 features.  

SHAP ranked 'Demand' and 'diff demand' as the two 
most significant features indicating a strong 
autoregressive component in the model but this also 
results in redundancy in selected features. A similar 
redundancy was observed with XGBoost combining 
'hour' and 'cyclic hour' as top features. 

While no such claim has been explicitly made, it is 
clear when compared to the optimally selected features, 
that SHAP does not rank features by their contribution to 
forecasting accuracy or quantify the predictive content 
of features. However, the ambiguous language used to 
describe SHAP values and "feature importance" in 
general as "a measure of a feature's significance to the 
model", could be misinterpreted as a measure of 
predictive content. This could lead to the incorrect belief 
that the more "important" or "significant" a feature is, 
the more justification there is to include it in the model. 

 

3.3 SHAP for refined feature selection 

One claim that may hold merit is that features with 
low or zero attribution scores can be removed without 
adversely affecting model accuracy. While this appears 
true for up to 40 top-ranked features, the comparable 
results between SHAP and Variance methods in this 
range do not strongly support this claim. To evaluate 
SHAP's effectiveness in refining feature selection, we 
conducted an experiment using the top 16 features 
identified by NSGA-II. Since the optimal number of 
features is determined to be 9, selecting 16 features 
allowed us to investigate the contribution of additional 
features that might not be essential. We trained a 1D 
CNN with these features, calculated average SHAP 
values, and excluded those with zero attribution scores, 
resulting in 11 features. Table 3 presents the mean and 
standard deviation of performance metrics across 50 
experimental runs using this refined feature set, 
demonstrating the impact of SHAP-based feature 
selection on model accuracy and consistency. 

 
Table 3: Comparative performance metrics of CNN with 

refined feature set based on non-zero average SHAP 
values.  

Method 
Num 
Features 

MSE 𝐑𝟐  

NSGA-II+SHAP 11 2365.87 ± 103.29 0.93393 ± 0.00288 
NSGA-II 9 2364.03 ± 83.44 0.93398 ± 0.00233 
NSGA-II 10 2357.86 ± 97.26 0.93415 ± 0.00272 
NSGA-II 16 2370.66 ± 68.32 0.93379 ± 0.00191 
All features 65 2556.2 ± 128.95 0.92861 ± 0.0036 

 
Table 3 shows that removing features with zero average 
SHAP values from the 16 optimally selected features 
does not reduce model accuracy, though it does lead to 
increased variance in performance across experiments. 
This outcome provides stronger evidence that SHAP-
based feature selection effectively maintains accuracy 
while refining the feature set. 

4. CONCLUSIONS 
Our study reveals that SHAP does not reliably select 

small subsets of informative features from whole dataset 
as it does not consistently rank features by their 
predictive value. SHAP and XGBoost also tend to assign 
high significance to features that contain the same 
information, indicating that these methods do not 
effectively eliminate redundancy. Our study shows that 
features selected by XGBoost generally outperform 
those selected by SHAP, consistent with findings from 
another study [11]. Interestingly, the study in [11] 
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reports that XGBoost's efficacy diminishes as feature 
count increases. Similarly, our study found SHAP to be 
more effective in refining smaller feature sets, 
maintaining model accuracy by eliminating non-
contributive features. 

However, SHAP requires more computation time and 
often selects features comparable or inferior to those 
selected by XGBoost. While SHAP and XAI are valuable 
for creating interpretable models, we recommend 
against relying solely on SHAP for feature selection. A 
hybrid approach that combines multiple methods could 
offer a more effective solution. 
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