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ABSTRACT 
 With the widespread adoption of Carbon Capture and 
Storage (CCS) technologies and investigations into 
advanced power cycles such as the supercritical CO2 
(sCO2) Brayton cycle, it is particularly crucial to focus on 
the risks and dynamics associated with accidental leaks 
under supercritical conditions. One key aspect is the 
accurate prediction of critical flow rates of supercritical 
fluids during leakage events. Owing to the scarcity of 
experimental data on critical flow in sCO2 microchannels, 
this study harnesses the abundant experimental data 
from critical flow studies of water, employing machine 
learning algorithms enhanced by transfer learning to 
predict the critical flow rates of sCO2. The approach 
involves pre-training a neural network on critical flow 
data from water, followed by fine-tuning with sCO2 data, 
thereby bridging the gap in data availability and 
enhancing the model's generality across various 
parameters. The principal research findings indicate that 
transfer learning can improve prediction accuracy and 
adaptability, suggesting that transferring knowledge 
from extensively studied fluids like water can effectively 
enhance the predictive performance of less-documented 
supercritical fluids. This research provides a valuable tool 
for designing safer CCS and energy systems.  
Keywords: Carbon Capture and Storage; Supercritical 
Carbon Dioxide; Critical Flow; Neural Networks; Transfer 
Learning. 

NONMENCLATURE 

Abbreviations  
CCS Carbon Capture and Storage 
HEM Homogeneous Equilibrium Model 
LBB Leak Before Break 
ML Machine Learning 
SFM Separated Flow Model 
SHAP  SHapley Additive exPlanations 
TL Transfer Learning 
Symbols  

A  Cross-section Area / m2 
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net

i
b  Biases for Each Layer 

D  Hydraulic Diameter/m 

kE  Interfacial Energy Exchange/ kg∙m∙s−3 

f  Friction Coefficient 

G  Critical Mass Flux /kg·m-2·s-1 
h  Enthalpy /J·kg-1 

L  Channel Length /m 

M  
Interfacial Momentum Exchange 
Term /kg·s-2 

p  Pressure /Pa 

rp  Reduced Pressure/Pa 

wq  
Heat Flux of Liquid-wall Interface / 
kg∙m-1∙s−3 

T  Temperature/K 

rT  Reduced Temperature 

u  Velocity/m·s-1 

net

iW  Weight Matrices 

  Surface Roughness /m 
  Void Fraction 
  Density /kg·m-3 

net  Nonlinear Activation Function 

1. INTRODUCTION 
Carbon dioxide (CO2), as one of the primary sources 

of greenhouse gases and a working fluid in new power 
cycles, is increasingly attracting the attention of 
researchers and professionals in the field of engineering 
and technology, particularly concerning its safety and 
reliability during transportation and operation.  

Carbon Capture and Storage (CCS) is considered one 
of the most cost-effective and efficient methods to 
mitigate CO2 emissions from power plants and other 
carbon-intensive sources, thereby slowing global 
warming [1, 2]. The CCS system primarily involves the 
following processes: capturing CO2 and compressing it to 
a supercritical state (or dense phase), and then 
transporting the supercritical CO2 (sCO2) to be stored in 
geological formations. Additionally, in response to the 
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challenges of energy crises and environmental pollution, 
countries worldwide are developing advanced power 
cycles such as the sCO2 Brayton cycle to achieve higher 
levels of energy sustainability, reliability, and economic 
efficiency. The sCO2 Brayton cycle has been extensively 
studied over the past decade, achieving considerable 
thermal efficiency and reducing the overall system size. 
Currently, sCO2 power cycles are considered an efficient 
and economical choice for various applications including 
solar thermal systems, next-generation nuclear reactors, 
and waste heat recovery systems [3-5]. In any of these 
applications, accidental CO2 leaks pose a potential risk 
that could threaten people, equipment, and the 
environment. 

 
Fig. 1. Schematic of the supercritical carbon dioxide cycle [6]. 

In industrial applications, sCO2 is typically 
transported and stored in high-pressure pipelines and 
containers. Over time, potential corrosion can lead to the 
development of small fissures in the pipelines, seals, and 
valves, resulting in leaks. When the sCO2 system is 
compromised, CO2 can escape through any cracks in the 
pipelines and containers, leading to hazardous situations 
characterized by low temperatures, asphyxiation, and 
damage. Therefore, it is essential to assess the safety of 
these systems and develop early leak detection and 
monitoring technologies. These advancements provide 
crucial support for the establishment of a warning, 
prevention, and control mechanism for micro-crack 
channel leakage incidents.  

In this process, a critical aspect is understanding the 
leakage behavior and release rates of sCO2 through 
compromised systems. The release of sCO2 through 
microchannel fissures occurs in a critical state of 
maximum flow, commonly referred to as critical flow or 
choked flow. This flow is influenced by factors such as 
upstream pressure, upstream temperature, inlet 

morphology, and aspect ratio, while being unaffected by 
downstream pressure.  

Despite extensive research on the flow dynamics of 
sCO2 leaks, the critical flow of sCO2 remains complex. The 
paucity of experimental data for sCO2 in microchannels 
poses significant challenges to developing accurate 
predictive models. Existing models for sCO2 critical flow 
are largely based on critical water flow models. However, 
due to differences in the physical properties of CO2 and 
water and distortions in the pseudo-critical region, 
models based on water critical flow do not adequately 
describe CO2 critical flow.  

With the advancement of machine learning 
techniques, utilizing these methods to discover patterns 
in experimental data for accurate prediction has become 
a promising direction. Current research has shown 
promising reductions in prediction errors. Lahiri et al. [7] 
combined artificial neural networks with genetic 
algorithms to effectively integrate neural network 
hyperparameters for predicting fluid critical velocities. 
Zhang et al. [8] employed a genetic neural network 
(GNN) to predict leakage prior to rupture (LBB) under 
various conditions, reporting a relative error of 22.7% 
and suggesting an associated methodology. Xu et al. [9] 
proposed a method based on genetic neural networks to 
predict critical flow, considering not only the critical mass 
flux but also the critical pressure and mass. Yuan et al. 
[10] established a sCO2 critical flow prediction model 
using a recurrent neural network (RNN) approach, 
applying K-fold cross-validation and L2 regularization, 
and utilized genetic algorithms to determine the optimal 
hyperparameters, reporting an average error of 4.88%.  

Typically, traditional machine learning relies heavily 
on large amounts of training data. It operates under a 
critical assumption [11]: the training and testing data are 
drawn from the exact same distribution. However, this 
assumption often does not hold true in many real-world 
scenarios. Consequently, most conventional ML 
algorithms face three primary challenges: insufficient 
data, incompatible computational power, and 
distribution mismatch. This is particularly true for the 
issue of critical flow in sCO2, which lacks experimental 
data across a broad range of parameters.  

Given that experimental data on critical flow in 
microchannels based on water are far more abundant 
than those for sCO2, transfer learning (TL) emerges as an 
effective means to enhance the generalization 
capabilities of current machine learning models [12]. The 
primary objective of TL is to leverage knowledge learned 
from source tasks in different domains to address target 
tasks, thereby obviating the need to start learning from 
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scratch in the data [13, 14]. This approach initially 
addresses the crucial issue of a lack of well-labeled 
training data. Moreover, it can significantly reduce the 
time and computational resources needed to train 
models because it allows for the reuse of pre-learned 
knowledge from other domains and tasks. Additionally, 
mismatches in distribution can lead to significant 
performance degradation in ML models. TL can also 
address this issue by integrating knowledge from one or 
more different domains.  

 
Fig. 2. Schematic of the transfer learning. 

This paper first conducts a deep neural network 
fitting using experimental data on water critical flow, 
followed by transfer learning based on experimental 
data for sCO2 critical flow. This approach enhances the 
accuracy and generalizability of the model predictions. 
The predictive method established in this study provides 
a valuable reference for developing critical flow models 
across a wide range of parameters.  

2. DATASET AND PARAMETER DESCRIPTION 

2.1  Dataset based on water critical flow 

Data from seven different experimenters on 
subcooled water microchannel critical flow have been 
collected to serve as the source training data for transfer 
learning. This dataset, used for initial deep neural 
network fitting, encompasses a wide range of 
microchannel geometrical dimensions and inlet 
conditions. The specific parameters are summarized in 
Table 1.  

Table 1 Summary of Experimental Parameters(water) 

Source 
Inlet fluid 
pressure 

/MPa 

Inlet fluid 
temperature 

/K 

Length 
/mm 

Hydraulic 
diameter 

/mm 

Flow channel 

area /mm2 

Number 

of data 

Collier et al.[15] 4.04 - 9.11 493.1 - 555.4 20 
0.09 - 

0.35 
0.07 - 4.96 29 

Huang et al. [16] 3.92 - 11.12 459.1 - 538.1 80 1.13 6 19 

Abdollahian et al. [17] 3.26 - 11.53 451.6 - 540.9 57.2 0.4 - 2.2 12.70 - 71.12 27 

Amos et al. [18] 2.73 - 15.92 465.8 - 646.8 63.5 
0.16 - 

0.75 
0.03 - 7.81 71 

John et al. [19] 3.91 - 12.16 462.9 - 595.9 46 0.5 - 1.3 20 - 52 458 

Revankar et al. [20] 6.6 - 6.87 508.6 - 531.7 0.32 
0.59 - 

0.71 
0.83 - 1.74 19 

Mignot et al. [21] 24.43-25.09 480 - 514 280 1.59 1.98 7 

Total      630 

2.2 Dataset based on sCO2 critical flow 

As the target task for transfer learning, critical flow 
data for sCO2 has been collected from various 
researchers, with specific parameters summarized in 

Table 2. Additionally, the experimental dataset from Fan 
et al. [22] has been selected as the validation dataset, 
which does not participate in the training process. This 
selection is intended to test the generalization ability of 
the model. 

Table 2 Summary of Experimental Parameters(sCO2) 

Source 
Inlet fluid 
pressure 

/MPa 

Inlet fluid 
temperature 

/K 
Length /mm 

Hydraulic 
diameter 

/mm 

Flow 

channel 

area /mm2 

Number 

of data 

Liu et al. [23] 7.52 - 9.03 308.1 - 318.1 8.02 -25.42 0.83 - 1.53 0.99 - 1.43 46 

LI et al. [24] 7.5 - 9.2 288.4 - 329.5 2-20 2 3.14 76 

Wang et al. [25] 8 - 11 307.2 - 368.8 1-100 1 0.785 39 

Mignot et al. [26] 10.1 312 - 378.9 338.1 2 - 3.175 3.14 - 7.92 59 



4 

Fan et al. [22] 8 - 10.71 308 - 373.8 1 - 15 1.01 0.8 65 

Edlebeck et al. [27] 7.7 - 11 304.6 - 331.7 3 - 20 1.01 0.79 - 0.81 32 

Total      317 

3. ESTABLISHMENT OF THE DEEP LEARNING MODEL 

3.1 Determination of input parameters 

Traditional methods for solving critical flow primarily 
include simplified analytical models, such as the Moody 
and Henry-Fauske models [28, 29], along with numerical 
computation models that solve sets of two-phase control 
equations. These include the Homogeneous Equilibrium 
Model (HEM) and the Two-fluid model/Separated Flow 
Model (SFM) [30-35].  

In this context, Richter [36] developed a detailed 
SFM that describes the interphase transfer 
characteristics of subcooled water gas-liquid critical flow. 
This model assumes one-dimensional, steady-state flow 
within the tube where the pressure is uniform across any 
cross-section. It also disregards the friction between the 
vapor and the tube walls. The conservation equations for 
mass, momentum, and energy in this model are as 
follows:  
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where α, ρ, A, u, p, g, θ and z indicate the void 
fraction, fluid density, cross-section area of the channel, 
fluid velocity, fluid pressure, acceleration of gravity, 
inclination angle and the coordinate along the flow 
channel, respectively. The terms Γ , M , E , fw , qw 
indicate the rate of mass transfer, momentum transfer, 
and energy transfer per unit channel length due to 
evaporation along the vapor-liquid interface, wall force 
and interfacial heat transfer. The subscript k=g is for the 
vapor phase and k=l is for the liquid phase. 

From the classical phase flow equations (1)-(3), it is 
apparent that the main parameters affecting critical flow 
include inlet pressure, inlet temperature (or inlet 
enthalpy), the geometry of the inlet cross-section, 
channel length, and the effects of friction.  

In summary, inlet pressure and inlet temperature 
are considered as inputs to characterize the influence of 

thermal parameters on mass flow rate. Additionally, the 
impact of the breach shape on mass flow is taken into 
account, incorporating inlet cross-sectional area, 
hydraulic diameter of the inlet cross-section, channel 
length, and channel roughness as input parameters. 
Considering the requirements for generalizability and 
ease of training, these input parameters are 
dimensionless. The final selected parameters include 
Inlet reduced pressure p/pc, Inlet reduced temperature 
T/Tc, inlet area ratio 4A/πD2 (ratio of the inlet cross-
sectional area to that of a circular tube), channel L/D 
ratio, and channel relative roughness ε/D.  

3.2 Neural network structure 

A basic Feedforward Neural Network (FNN), or 
Multilayer Perceptron (MLP), is defined as a fusion of 
linear and nonlinear transformations. A deep neural 
network is a type of feedforward neural network with 
multiple hidden layers. Compared to traditional 
feedforward neural networks, deep neural networks 
have more layers and a more complex structure, 
enabling them to capture and learn more complex 
patterns and features. The architecture of such networks 
typically includes an input layer, several hidden layers, 
and an output layer, defined as follows:  
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Its composition includes the weight matrices Wnet
i 

and biases bnet
i for each layer, coupled with a nonlinear 

activation function σnet(∙). In the pursuit of computing the 
active subspace for the dataset (γ, g(γ)), the neural 
network N(γ) is utilized for fitting, optimizing the 
network's weights Wnet

i and biases bnet
i. 

The network parameters are updated using the 
AdamW [37], which combines weight decay techniques 
with the Adam optimizer. Weight decay is a technique 
that biases the optimization towards solutions with 
smaller norms. It has long been a standard technique for 
improving the generalization capability of machine 
learning models and continues to be widely employed in 
the training of modern deep neural networks [38, 39]. 

The performance of the two models was evaluated 
using the mean absolute percentage error (MAPE), mean 
absolute error (MAE), defined as follows: 
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Here, the subscripts pre and true represent the 
network's predicted and true values from the dataset.  

3.3 Transfer learning 

Transfer learning is a machine learning strategy that 
allows the use of models trained on an original task to be 
applied to a different but related task. This method 
leverages the model libraries already trained on the 
original task, reducing the amount of training data 
required for the target task, enhancing learning 
efficiency, and often improving model performance. The 
goal of transfer learning is to utilize knowledge obtained 
from the source task to enhance the learning 
performance on the target task. The main steps involved 
include:  

1. Pre-trained Model: Train a model ( ; )S

S i Sf x  on 

the source task, optimizing the loss function S : 

( , )
arg min [ ( ( ; ), )]S S

i i S
S

S S

S S S i S iy
f y


 


=

x
x  

2. Transfer Model: Use the pre-trained model 

parameters S


 as initial values and fix some parameters to 

construct the target model ( ; )T Tf x : 

( ; ) ( ( ; ), )T T S S Tf g f  =x x  

Here, g  represents the model structure that relates the 

pre-trained model Sf  to the new task. 

3. Fine-tune Model: Optimize the target model Tf  

parameters T


 on the target domain T : 

( , )
arg min [ ( ( ; ), )]T T

i i T
T

T T

T T T i T iy
f y


 


=

x
x   

Here the subscript T denotes 'target' and S denotes 
'source'. 

4. RESULTS AND DISCUSSION 

4.1 Neural network predictive performance and 
generalization verification 

The neural network is initially trained on the source 
task, configured with nodes arranged in the layers as [5, 
8, 16, 16, 8, 1]. Batch normalization layers are 
incorporated, bringing the total number of layers in the 
deep neural network to 9. The network is trained using 
the AdamW optimizer over 4000 steps with a learning 
rate of 1e-3.  

The training results, as shown in Figure 3, indicate 
that the neural network accurately predicts the critical 
flow in the source dataset, which involves the critical 
flow of water as the inlet medium. The model achieves 
an average relative error of 5.87% and an average 
absolute error of 1313.8. 

 
Fig. 3. Neural network fitting of critical flow mass flux (water, 

maximum nodes 16) 
In the transfer learning phase, it is common to 

freeze the initial layers (which typically learn more 
generic features) and retrain the later layers (which learn 
features more specific to the new task). Thus, the last 
three layers of the network are retrained while the first 
six layers are frozen. The network is retrained on the 
basis of the previously trained model to test its fitting 
effectiveness.  

In Figure 4, the neural network's fit on the training 
dataset for sCO2 shows an average relative error of 5.54% 
and an average absolute error of 1720.6. On the 
generalization dataset, it achieves an average relative 
error of 8.05% and an average absolute error of 2320.9. 
The fitting results are favorable, with the neural network 
requiring only a few additional training steps (400 steps) 
to effectively transfer from the source dataset (water) to 
the target dataset (CO2), ensuring good generalizability. 
This generalizability is validated by a dataset that was not 
used in the parameter training process, comprising 65 
data points from Fan's [22] experiments on sCO2 critical 
flow.  

  

(a) Training set (b) Generalization set  

Fig. 4. Neural network fitting of critical flow mass flux (with TL, 

CO2, maximum nodes 16) 

The results of training directly from the target data 
source (CO2) are shown in Figure 5. Direct training fails to 
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ensure high accuracy on the training dataset, with an 
average relative error of 14.0% and an average absolute 
error of 4823.1. This highlights that transfer learning not 
only enables the neural network to learn the 
characteristics of sCO2 critical flow more effectively and 
quickly but also better ensures the requirements for 
generalizability.  

  

(a) Training set (b) Generalization set  

Fig. 5. Neural network fitting of critical flow mass flux (no TL, 

CO2, maximum nodes 16) 

Increasing the number of nodes in the neural 
network can improve accuracy on the training dataset, 
with an average relative error of 5.99% and an average 
absolute error of 2202.4, but it risks overfitting, as shown 
by a deterioration in performance on the generalization 
dataset, as illustrated in Figure 6(b).  

  

(a) Training set (b) Generalization set  

Fig. 6. Neural network fitting of critical flow mass flux (no TL, 

CO2, maximum nodes 32) 

4.2 Analysis of transfer learning results 

The study examined the impact of the number of 
neurons on transfer learning, as illustrated in Figure 7. It 
was found that increasing the number of nodes tends to 
reduce errors on the training dataset regardless of 
whether transfer learning is used; however, it increases 
errors on the generalization dataset, making the model 
more prone to overfitting. In the context of transfer 
learning, too few nodes hinder successful transfer, while 
too many lead to overfitting.  

 
Fig. 7. The impact of the maximum number of nodes in neural 

network on transfer learning 
Another critical parameter in transfer learning is 

the number of layers frozen. Fewer frozen layers mean 
more parameters need retraining, and less information 
from the source database is retained. As shown in Table 
3, if too many layers are frozen within a limited number 
of retraining steps, the transfer effect cannot be 
achieved. Conversely, freezing too few layers retains 
insufficient information from the source database, 
which can increase errors on the generalization dataset.  

Table 3 Error after freezing different layers in transfer learning. 

 Training set Generalization set 

Num of 
frozen 
layers 

Mean 

percentage 

error (%) 

Max 

percentage 

error (%) 

Mean 

percentage 

error (%) 

Max 

percentage 

error (%) 

7 17.1  130.6  31.5  149.9  
6 5.5  21.6  8.0  24.6  
5 3.2  11.9  9.5  40.8  
4 2.6  11.7  7.2  24.7  
3 3.3  13.6  9.5  40.3  

4.3 SHAP values of the model 

To reveal the impact of each variable on the model 
more specifically and to compare differences after 
training with data from different media, SHAP (SHapley 
Additive exPlanations) values were introduced. SHAP, 
proposed by Lundberg et al. [40, 41] in 2017, is a unified 
framework for explaining predictions that integrates 
ideas from game theory [42] and local explanations [43]. 
It quantifies the contribution of each feature in the 
model to the final prediction. Currently, SHAP values are 
widely used to explain machine learning models.  

SHAP values were calculated for both the source 
model before transfer learning and the model after 
transfer learning. The results, as illustrated in the Figure 
8, indicate that after transferring the critical flow 
prediction model trained on water to sCO2, the 
influences of inlet pressure, inlet temperature, and L/D 
ratio increased, while the impact of roughness 
decreased. Since all collected sCO2 datasets had circular 
inlet cross-sections, the inlet area ratio had almost no 
impact.  
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It must be noted that due to the local interpretive 
nature of SHAP values, the explanations of importance 
for the data-poor sCO2 dataset are significantly limited by 
the dataset's richness.  

 
Fig. 8. Contribution of each feature to the model. 

5. CONCLUSIONS 
In summary, this study established a microchannel 

sCO2 critical flow prediction model using neural networks 
and transfer learning. The main efforts and conclusions 
drawn are as follows: 

(1) Feature selection for the neural network was 
grounded in traditional numerical models, utilizing a 
source database comprised of experimental data on 
critical flow in water microchannels. Through transfer 
learning, the model was successfully adapted to sCO2 
critical flow scenarios, exhibiting enhanced accuracy and 
generalizability. 

(2) The effects of the number of neurons and the 
number of frozen layers on the transfer learning 
outcome were studied, revealing that while more 
neurons and fewer frozen layers decrease errors on the 
training dataset, they do not guarantee reduced errors 
on the generalization dataset.  

(3) The comparison of SHAP values before and after 
transfer learning on the collected dataset revealed that 
the importance of inlet pressure, inlet temperature, and 
L/D ratio in determining the model's predictions 
increased after the model was transferred from water to 
sCO2.  
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