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ABSTRACT 
 With the increase in industrial carbon emissions, the 
efficient recovery of waste heat has become imperative. 
Thermal Energy Storage (TES) systems utilizing Phase 
Change Materials (PCMs) present a viable solution, with 
Packed Bed Latent Heat Storage Systems (PBLHS) being 
particularly noted for their effectiveness. However, 
current PBLHS designs face challenges in terms of 
accuracy and adaptability. This research introduces a 
Machine Learning (ML) approach to overcome these 
obstacles. By leveraging data from a validated 
Computational Fluid Dynamics (CFD) model, a deep ML 
model was developed and trained, achieving an R2 value 
of 0.975 and a MAPE of less than 9.14%. The Harmony 
Search algorithm emerged as the most effective 
optimization technique, which, after refinement, 
enhanced design efficiency by over 40%. The optimized 
model improved existing experimental setups by up to 
84%. This study underscores the potential of ML in 
advancing TES system designs for efficient waste heat 
recovery. 
 
Keywords: Waste heat recovery, Thermal Energy 
Storage, Phase Change Materials, Packed Bed Latent 
Heat Storage Systems, Machine Learning, Harmony 
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NONMENCLATURE1 
Abbreviations  
TES Thermal Energy Storage 
WHR Waste Heat Recovery 
PBLHS Packed Bed Latent Heat Storage 
CPCM Composite Phase Change Material 
LHS Latin Hypercube Sampling 
CFD Computational Fluid Dynamics 
ML Machine Learning 
GA Genetic Algorithm 
ACO Ant Colony Optimization 

 
# This is a paper for the 16th International Conference on Applied Energy (ICAE2024), Sep. 1-5, 2024, Niigata, Japan. 

HS Harmony Search 
WDO Wind Driven Optimization 
Symbols  
t_charging Charging Time – [h] 
t_discharging Discharge Time – [h] 
T0 Initial Temperature – [K or °C] 
T_ext External Temperature – [K or °C] 
T_m1 Melting Point of PCM1 – [K or °C] 
T_m2 Melting Point of PCM2 – [K or °C] 
T_m3 Melting Point of PCM3 – [K or °C] 
T_u Upstream Temperature – [K or °C] 
s_ins Insulation Thickness – [m] 
L1 Length of Storage Tank 1 – [m] 
L2 Length of Storage Tank 2 – [m] 
L3 Length of Storage Tank 3 – [m] 
u Fluid Velocity – [m/s] 
V_in Inlet Flow Rate – [m3/s] 
ds Storage Tank Diameter – [m] 
Q_charge Heat Stored – [J] 
Q_discharge Heat Extracted – [J] 

dp Diameter of spherical CPCMs in the 
packed bed [m] 

1. INTRODUCTION 
Core industries are essential to the global economy 

but encounter significant challenges in achieving 
sustainable decarbonization [1]. The European Union 
aims to cut industrial carbon emissions by 42% by 2030 
[1]. Currently, industries account for 27% of total energy 
consumption and contribute 30% of heat-related CO2 
emissions in the EU [2]. A substantial portion of this 
energy (70%) is dedicated to thermal processes, 
representing 18.9% of the EU’s total energy demand [3]. 
Approximately 400 TWh/year of high-quality waste heat 
is generated, highlighting substantial potential for 
recovery and reuse [1]. 

Waste heat recovery (WHR) is particularly crucial for 
energy-intensive industries [1]. Thermal Energy Storage 
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(TES) systems bridge the gap between waste heat 
generation and consumption, optimizing process 
parameters and reducing losses during startups and 
partial operations more cost-effectively than other 
methods such as Organic Rankine Cycle (ORC) systems or 
Thermoelectric Generators (TEGs) [1]. 

TES encompasses sensible, latent, and 
thermochemical storage methods [3]. Sensible Thermal 
Energy Storage (STES) provides stability but suffers from 
drawbacks like temperature decline during discharge 
and low energy density [3]. Latent Heat Thermal Energy 
Storage (LHTES) employs Phase Change Materials (PCMs) 
to absorb and release heat at a constant temperature, 
addressing temperature variations and offering higher 
energy density [3]. However, PCMs face challenges, 
including low thermal conductivity, subcooling, 
corrosion susceptibility, and volume expansion during 
phase transitions [3]. Composite PCMs (CPCMs), which 
integrate PCMs into heat-resistant frameworks, enhance 
efficiency across various applications, including 
integrated TES systems [3]. 

CPCMs improve charging and discharging efficiency, 
resolve leakage issues, enhance handling, and enable 
direct heat transfer systems [4]. These direct systems 
reduce thermal resistance, benefit from favorable 
thermal stratification, and improve overall exergy, all 
while being cost-effective due to fewer components [4]. 

Packed Bed Latent Heat Storage Systems (PBLHS), 
which incorporate CPCMs, provide effective and flexible 
solutions for a wide range of temperatures, from 
Concentrated Solar Power (CSP) systems to low-
temperature applications [4]. Their efficiency, cost-
effectiveness, and broad applicability have garnered 
significant attention [4]. Recent studies have explored 
various advancements in PBLHS design to enhance 
efficiency and performance. Wu et al. demonstrated that 
cascaded PCM systems improve charging efficiency [5], 
while Liu et al. highlighted the significant impact of radial 
porosity on heat transfer and PCM melting time in 3D 
models [6]. Wang et al.'s two-dimensional model 
showed that a radial gradient arrangement enhances 
heat transfer and reduces pressure drop, achieving an 
energy efficiency of 84.16% [7]. Dong et al. proposed a 
biomimetic vein hierarchical structure, improving 
temperature distribution and thermal response [8]. 
Nekoonam and Ghasempour used a Genetic Algorithm to 
optimize PCM thermal conductivity in solar-integrated 
PBLHS, maximizing stored energy [9]. Other studies, such 
as those by El Sihy et al. [10] explored various aspects of 
PBLHS, including PCM configurations, heat recovery, and 
the effects of inlet velocity and temperature. These 

studies collectively underscore the potential for ML and 
optimization techniques to advance TES systems. 

Machine Learning (ML) is emerging as a promising 
and adaptive alternative in TES modeling. ML has 
demonstrated potential in various TES applications, 
improving performance prediction and design efficiency 
compared to traditional Computational Fluid Dynamics 
(CFD) models [11]. Studies have highlighted the 
advantages of ML in TES applications, including more 
accurate performance predictions and design 
optimizations [11]. 

Traditionally, PBLHS research has relied on classical 
finite element models (FEM) and analytical models. 
While FEM can accurately model heat transfer, it is 
computationally expensive, time-consuming, and limited 
to specific scenarios. Analytical models, though more 
adaptable, often suffer from reduced accuracy due to 
idealized assumptions. 

Recent trends favor ML due to the availability of 
data, increased computing power, and advancements in 
algorithms. Unlike FEM and analytical models, ML 
operates with approximate models, providing near-
accurate solutions while managing uncertainty [12]. 
Additionally, ML requires fewer computational resources 
without compromising accuracy. 

Current research on PBLHS leverages ML for 
performance prediction. Li and Lv generated training 
data using Latin Hypercube Sampling (LHS) and 
numerical simulations, employing LightGBM (LGBM) to 
analyze the impact of Heat Transfer Fluid (HTF) flow rate, 
tank dimensions, and PCM phase change temperature on 
PBLHS performance [12]. Post-optimization with Naive 
Bayes improved heat metrics, but the study was limited 
to a 100°C inlet heat stream and did not incorporate 
cascade systems. 

Anand et al. [13] found XGBoost (XGB) yielded the 
best R² (0.982) and lowest error for PBLHS 
charging/discharging times, but the study was restricted 
to 25–100°C, without cascade systems. Research gaps 
remain in expanding temperature ranges, incorporating 
cascade systems, and enhancing ML model 
interpretability for PBLHS. 

In conclusion, PBLHS with encapsulated PCMs holds 
significant potential for waste heat recovery. Although 
ML research in this area shows promise, it requires a 
broader scope and consideration of cascade systems to 
realize its full potential. 

2. METHODS 

2.1 Model Definition 
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The modeling analysis was conducted using the CFD 
platform, COMSOL Multiphysics. Several foundational 
assumptions were incorporated. The computational 
domain, representing the packed bed with PCM 
capsules, is treated as a continuous, isotropic porous 
medium. The tank dimensions and PCM capsule sizes 
were based on standard industrial parameters. 
Radiation-driven heat transfer within the tank and 
intrinsic heat sources were neglected. Fluid dynamics 
were assumed stable, with no mass deposition or 
generation, and thermal expansion effects were not 
considered. For the solid walls interfacing with the fluid 
domain, a “no-slip” condition was applied, ensuring zero 
fluid velocity at these boundaries. Similarly, the standard 
no-slip formulation was adopted within the porous 
medium. At the inlet, fluid entered perpendicularly, and 
the total volumetric flow rate was integrated over the 
inlet boundary. Outlet conditions were regulated to 
prevent backflow and maintain pressure above ambient. 

The “Free and Porous Media Flow” interface was 
used to compute fluid dynamics within the packed bed, 
employing the Navier-Stokes equation for compressible 
flow. Due to high Reynolds number (Re > 10) and 
Knudsen numbers (Kn > 0.1), the non-Darcian flow model 
based on the Ergun equation was utilized. Mass 
conservation was ensured, with gravity explicitly 
modeled to oppose the charging flow direction. The 
Boussinesq approximation was used for thermal 
convection. 

Thermal dynamics were simulated using the “Heat 
Transfer in Solids and Fluids” interface. Air density was 
modeled according to the ideal gas equation, and a linear 
discretization scheme ensured numerical stability and 
precision. A Local Thermal Nonequilibrium (LTNE) 
approach accounted for temperature differences 
between fluid and solid phases. 

CPCM properties and phase changes were modeled 
using average density and specific heat capacity values, 
considering latent heat and volume fractions of the 
phases. Thermal conductivity and heat flux, including 
specific heat flux at the tank's side boundaries, were 
incorporated. 

The problem-solving methodology involved first 
addressing free porous media flow in a stationary phase, 
then solving heat transfer dynamics in a time-dependent 
phase. The Parallel Direct Solver (PARDISO) efficiently 
handled large sparse matrices, with optimized solver 
settings and a relative tolerance of 0.0001. A timestep of 
0.5 min captured transient behavior. 

2.2 Production of the dataset for Machine Learning 

To develop an ML model for predicting PBLHS design 
and performance, we conducted a comprehensive 
parametric analysis using the previously described 
model. The parameters examined included structural 
factors such as aspect ratio and insulation thickness, 
along with material properties like CPCM particle size 
and thermal characteristics. 

A distinctive aspect of our approach is the treatment 
of the system as a three-layer cascade with CPCMs. The 
melting points of these CPCMs were selected 
progressively from highest to lowest, given the inlet is at 
the top of the tank, constrained to be compatible with 
MgO. 

To calculate the specific heat capacity (Cp) of each 
CPCM layer, we used mixing theory and the Cp values of 
MgO and the respective PCM at its melting point. Latent 
heat was determined similarly. For thermal conductivity, 
we utilized the Ratcliffe formula, identified as the best-
performing empirical relationship. Each CPCM layer 
exhibited slightly different properties. 

The properties of the CPCMs were defined as 
functions of their melting points, following an extensive 
literature review to identify compatible PCMs. The 
selected PCMs offer a broad range of temperature 
applications for thermal energy storage. Paraffin RT 
Series PCM is suitable for lower temperatures (50-
100°C), while a quaternary molten salt (LiNO3-NaNO3-
KNO3-Ca(NO3)2) covers moderate temperatures (98-
147°C). The NaNO2-KNO3 binary molten salt handles 
higher temperatures (138-220°C), and NaNO3-KNO3 Solar 
Salt is ideal for high-temperature applications (220-
334°C). These selections accommodate various 
temperature requirements for thermal energy storage 
systems. 

The prediction model's accuracy relied on consistent 
data sampling. To ensure this, a large number of diverse 
parameter combinations covering the entire spectrum 
were randomly chosen. Among various methods, Latin 
Hypercube Sampling (LHS) stood out for its ability to 
uniformly sample multiple parameter combinations, 
ensuring a robust dataset for the model. 

2.3 Deep Learning Model 

Deep Learning (DL) offers a superior method for 
predicting heat storage and extraction in PBLHS 
compared to traditional regression ML techniques. DL's 
multi-layered neural networks excel in representing 
hierarchical features and learning from raw data, 
enabling better data abstraction and generalization. 
Additionally, DL supports end-to-end and transfer 
learning, enhancing cross-task knowledge application. 
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Table 1. Variables evaluated in the ML model 

Symbol Lower 
Bound 

Upper 
Bound 

ds 0.15 6 
din 0.1 2 
dp 0.01 0.1 

V_in 0.1 6 
s_ins 0.01 1 

LI 0.1 6 
L2 0.1 6 
L3 0.1 6 

t_charging 1 8 
t_discharge 1 28 

T0 -5 30 
T ext -5 30 
T_m1 0.1 550 
T_m2 0.1 500 
T_m3 0.1 500 

Tu 0.1 650 
To characterize PBLHS behavior, a 2D-axisymmetric 

fluid dynamics and heat transfer set of differential 
equations for each dataset point was solved, 
determining heat storage and extraction across 
scenarios. 

Two neural networks were trained: one for heat 
storage and one for heat extraction. Input variables were 
categorized into Design Variables (e.g., tank diameter, 
inlet diameter, particle radius, flow rate, insulation 
thickness, tank lengths), Time Variables (charging and 
discharge times), and Temperature Variables (initial, 
external, CPCM melting points, upstream temperature). 

The neural network architecture featured increasing 
layer sizes for balance and generalization. Starting with a 
dense layer of 2048 units using ReLU activation, it 
transitioned through layers of 1024, 256, 64, and 16 
units, incorporating dropout layers and L2 regularization 
to control overfitting. The final single-unit layer 
outputted continuous values for regression tasks, 
ensuring effective feature extraction and robust 
generalization. Input features were standardized using a 
Standard Scaler, placing variables on a common scale for 
effective weighting by the neural network. 

The coefficient of determination (R2) and Mean 
Absolute Percentage Error (MAPE) assessed the neural 
networks' accuracy. Residuals, the differences between 
predicted and actual values, were subjected to a Shapiro-
Wilk test to check for normal distribution, a crucial 
assumption in many statistical analyses. 

2.4 Optimization with Metaheuristic Algorithms 

PBLHS presents complex challenges with numerous 
variables, requiring extensive optimization to determine 
optimal configurations. Traditional methods are often 
computationally intensive. Metaheuristics offer 
advanced, often stochastic, strategies for navigating 
large solution spaces efficiently. In this study, several 
metaheuristic algorithms were integrated with the 
neural network model to optimize PBLHS, leveraging the 
neural network's rapid estimation of heat extraction to 
expedite the process. 
1. Harmony Search (HS): Inspired by musical 

improvisation, HS balances random searches and 
pitch adjustments to find optimal solutions. It 
prevents local optima convergence, making it 
effective for various applications. 

2. Genetic Algorithm (GA): Simulates natural selection 
using mutation, crossover, and selection. GA evolves 
populations over generations to improve fitness, 
involving steps like initializing the population, 
evaluating fitness, selecting candidates, crossover, 
mutation, and replacement. 

3. Ant Colony Optimization (ACO): Inspired by ants' 
path-finding using pheromones, ACO selects paths 
based on pheromone levels and heuristic 
desirability. It updates pheromone trails and 
balances exploration and exploitation. 

4. Wind-Driven Optimization (WDO): Simulates air 
particle movement, updating velocities considering 
friction, gravity, mass, and the Coriolis effect. WDO 
adjusts positions based on updated velocities to 
simulate wind movements. 
Each algorithm was chosen for its strengths in the 

problem domain and integrated with the neural network 
for efficient PBLHS optimization. 

3. RESULTS AND DISCUSSION 

3.1 CFD Validation and Evaluation 

The CFD model utilized here was validated using data 
two validation studies were conducted at high and low 
temperatures. 

In the first study, involving a carbon steel storage 
tank with 770 capsules, simulations closely matched 
experimental results, with an average error of 0.46% 
[15]. The second study, based on Loem et al.'s work, 
showed a minor discrepancy during the charging phase, 
with an average error of 2.4% and a maximum deviation 
of 4.7°C at 18 minutes [16]. 

Additionally, a grid independence and timestep 
independence study found negligible variability (<3%). 

3.2 Neural Network Evaluation 
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The model's adaptability and performance are 
reflected in the R2 values of 0.975 for charge and 0.974 
for discharge, capturing over 97% of the variability in 
both processes. The average MAPE for charging and 
discharging cycles was ±9.17%, indicating an acceptable 
level of accuracy that could be enhanced by expanding 
the dataset. 

Residuals analysis using the Shapiro-Wilk test 
indicated normal distribution for both charge and 
discharge data, with p-values of 0.2738 and 0.1367, 
respectively. Effect sizes of 0.084 and 0.098 further 
suggest minimal deviation from normality, reinforcing 
the NN model's validity and meeting key regression 
assumptions. While standardized residuals generally 
align with a standard normal distribution, minor 
deviations indicate areas for potential model 
improvement. 

3.3 Optimization through Metaheuristic Algorithms 

To find optimal designs for maximizing heat capture 
and extraction, various metaheuristic algorithms suited 
to this variable space were employed. Balancing 
exploration (comprehensive search) and exploitation 
(optimization in known areas) was crucial. Three 
scenarios were studied for each algorithm: broad 
exploration, intensive exploitation, and a balanced 
approach. 

HS algorithms outperformed others in terms of 
computation time. HS1 achieved the highest heat 
extraction at 66 MJ in just 86 seconds, while HS3, a more 
balanced version, reached 79 MJ with about three times 
the computational demand.  

To further enhance performance, a comprehensive 
grid search tuned key hyperparameters like harmonies, 
iterations, memory consideration rate, and pitch 
adjustment rate. This systematic approach yielded an 
objective function value of 95,930 kJ. In the best 
scenario, computational time was only 17 seconds. 

3.4 Case Studies 

This section compares the proposed methodology's 
results with those from other studies, using data 
extracted from various literature sources under different 
setups and temperature conditions. The model 
consistently outperformed experimental results across 
all four scenarios, with cases 1 to 3 representing 
experimentally optimized results. 

The fine-tuned optimization algorithm that uses the 
neural network as the objective function generator 
showcased significant improvements in stored energy, 
extracted energy, charging efficiency, and total 

efficiency. Scenario 4 showed the highest improvements, 
with a 66.14% increase in stored energy and an 84.26% 
improvement in extracted energy. 

Table 2. Comparative Analysis across Different Scenarios 

Reference 1(16) 2 (15) 3 (17) 4 (18) 

Experimental 
Charging 
Temperature 
(°C) 

465 326 375 65 

Flow Rate 
(m³/s) 0.0129 0.030

56 
0.008

62 
0.0075

0 
Charging 
Duration 
(hours) 

1.0 3.33 5.0 3.0 

Discharge 
Temperature 
(°C) 

325 286 50 30 

Discharge 
Duration 
(hours) 

1.33 3.33 3.33 2.0 

Stored Energy 
[MJ] 7.44 3.96 26.41 2.54 

Extracted 
Energy [MJ] 6.48 3.84 25.59 2.16 

Charging 
efficiency [%] 91.5 72.3 76.4 50.5 

Total 
efficiency [%] 79.7 70.1 74 42.9 

Modelled 
Stored Energy 
[MJ] 7.66 5.01 31.11 4.22 

Extracted 
Energy [MJ] 7.12 4.78 28.37 3.98 

Charging 
efficiency [%] 93.6 92.8 90.3 84.4 

Total 
efficiency (%) 87.0 88.5 82.4 79.6 

Efficiency metrics also saw substantial gains, with 
scenario 4 showing a 67.13% increase in charging 
efficiency and an 85.55% increase in total efficiency. 
Scenario 2 showed a 28.35% improvement in charging 
efficiency and a 26.25% increase in total efficiency.  

4. CONCLUSIONS 
This study introduces an innovative approach in TES. 

An advanced design and optimization method for PBLHS 
is presented, leveraging deep learning (DL) coupled with 
metaheuristics. The key takeaways are: 
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1. The deep learning model demonstrated 
adaptability across various scales, with R2 values 
of 0.975 for charge and 0.974 for discharge, 
capturing over 97% of the variability for both 
processes. Additionally, the model achieved a 
reasonable MAPE of less than 9.14%. 

2. Various algorithms were employed to identify 
optimal designs that maximize heat capture and 
extraction. The Harmony Search (HS) algorithm 
emerged as the most effective, achieving an 
objective function value of 95.9 MJ, significantly 
outperforming other algorithms. 

3. The model was compared with four 
experimental scenarios, consistently surpassing 
experimental benchmarks in terms of energy 
storage and efficiency, particularly in total 
efficiency. 

In conclusion, this research introduces a novel 
approach by coupling DL with metaheuristics to optimize 
PBLHS, advancing TES design. Future work will integrate 
cost considerations, refine the model for larger energy 
scales, enhance generalization and interpretability, and 
validate findings experimentally. 
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