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ABSTRACT 
 Transportation electrification can reduce 
dependence on fossil fuels and promote energy 
transition. In the literature, numerous research efforts 
have been dedicated to investigating the influence of 
diverse energy and climate policies on EV penetration. 
However, limited attention has been given to the specific 
effects of ride-hailing services on EV penetration and the 
broader sustainable energy transition. In this study, we 
combine a Stated Preference (SP) survey with a bottom-
up transportation model to examine the role of ride-
hailing services on EV penetration and energy transition. 
Our method provides the benefit of analyzing how 
individuals opt for ride-hailing services over other 
transportation modes for different trips, while also 
endogenously determining the technology mix. The 
results reveal that ride-hailing services have the potential 
to increase EV penetration by 2.46%, or by 2.89% if the 
ride is shared, thereby contributing to the transition 
towards clean energy.  Policy interventions such as the 
implementation of carbon pricing and the promotion of 
public transport can further drive transportation 
electrification, showcasing a synergistic effect with ride-
hailing services. 
 
Keywords: transportation electrification, ride-hailing 
services, energy transition, electric vehicle, ride-sharing 
services  
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Abbreviations  
EV Electric Vehicle  
Symbols  

, ,y r iSmode  Probability of travel mode choice 

,r ix  Explanatory variable of transport mode 

β  Coefficient for the explanatory variable 

,Ω y i
 Fixed effect for each transport mode 

,r jx  Control variable for each travel mode 

ns  Socioeconomic variable for individual n  

 
# This is a paper for the 16th International Conference on Applied Energy (ICAE2024), Sep. 1-5, 2024, Niigata, Japan. 

jA  Impact of unobserved characteristics  

, ,n r j  Unobserved part of utility 

  Coefficient for socioeconomic variables 
  Coefficient for control variables 

, ,n r iy  Binary variable for travel mode choice 

,y r  Probability of the occurrence of travel 
combination r 

rD  The distance of trip 

rP  Binary variable for the origin of travel 

rD  Binary variable for the start time 

,y iQD  Travel demand of specific travel mode 

yQT  Total travel demand  

  Travel parameter 

,y iPmode  Travel cost of each travel mode  

, ,y i tPtec  Travel cost of technology t 

, ,y i tStec  Share of technology t 

, ,y i tPtime  Time cost 

tAWH  Annual working hours 

,y iATS  Average travel speed 

, , ,y i t fPfuel  Cost of fuel f 

, , ,y i t fPghg  Carbon emission cost 

, ,y i tPdevice  Annualized purchase cost 

yTC  Total annual cost 

, ,y i tPTdevice  Purchase cost 

, ,y i tOMT  Annual maintenance cost 

, ,y i tPTfuel  Annual fuel cost  

, , ,y i t fPTghg  Carbon emission cost 

, ,y i tIC  Acquisition cost 

,i tT  Lifecycle of each transportation mode 

, , ,y i t fPunitf  Unit fuel price 

, , ,y i t fAFC  Annual fuel consumption 

yδ  Carbon tax 

,y fef  Emission factor 

, ,y i tXT  Annual mileage traveled of vehicle 

, ,y i tCO  Load factor of vehicle 

, ,y i tO  The number of vehicles in operation 

, ,y i tST  Stock of vehicles 
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, ,y i trc  The number of newly added vehicles 

, ,y i trt  The number of retired vehicles 

, ,y i trt  The number of retired vehicles 

1. INTRODUCTION 
With the increasing global awareness of climate 

change and global warming, decarbonization has 
become a critical focus for future development. The 
transportation sector, which ranks as the second-largest 
energy consumer after industry, has seen a continuous 
rise in total carbon emissions [1-2]. According to the 
International Energy Agency (IEA), in 2022, carbon 
emissions from China's transportation sector accounted 
for approximately 10.4% of the nation's total carbon 
emissions [3-4].  

How the transportation sector reduces emissions is 
crucial to achieving climate goals. Transportation 
electrification can reduce reliance on fossil fuels, 
facilitate energy transitions, generate health co-benefits, 
and is regarded as essential for most future scenarios 

that align with the 2℃  target [5]. To encourage the 
widespread adoption of electric vehicles (EVs), various 
energy and climate policies have been implemented in 
countries such as the United States, Switzerland, Canada, 
Germany, and China [6-8]. While assessing the impacts 
of these policies on EV penetration, significant attention 
has been given to consumer behavior. The research 
efforts are usually put on improving the realistic 
representation of consumers’ behaviors, by for example 
introducing time costs, non-financial preferences, and 
consumer heterogeneity into vehicle choice models [9-
10], endogenously determining the mode splits based on 
discrete choice experiment [11], or introducing the latest 
available technologies for vehicle choice adoption [12]. 
Findings suggest that consumer behavior plays a crucial 
role in the energy transition and transportation 
decarbonization, as it interacts with policy measures. 
However, the potential impact of travelers' choice of 
ride-hailing services on the transport energy system has 
often been overlooked.  

As a new form of service emerging from the sharing 
economy revolution, ride-hailing services have become 
an innovative and promising strategy for meeting travel 
demand, particularly in countries like China and the 
United States, where commercial ride-hailing companies 
such as Didi Chuxing, Uber, and Lyft have been 
successfully established and operate on a large scale [13-
14]. Ride-hailing vehicles can be powered by either fossil 
fuels or electricity and may be used either individually or 
in a shared capacity. These services compete with other 

modes of transportation, potentially altering the modal 
split and influencing the technological landscape by 
affecting the balance between fuel-based and electric 
vehicles. Consequently, the penetration and utilization 
of ride-hailing vehicles have the potential to reshape the 
energy mix and the adoption of transportation 
technologies [15]. 

This paper investigates the role of ride-hailing 
services in transportation electrification. By exploring 
the differences in the impact of ride-hailing services 
under various policy scenarios, we examine how ride-
hailing electrification policies influence the overall 
system's electrification. We also assess the effects of 
different ride-hailing behaviors and fuel technologies on 
the adoption rate of electric vehicles. This paper 
develops a discrete choice model that considers 
travelers' preferences and behaviors, treating ride-
hailing services as a distinct mode of transportation. 
After obtaining the market shares of various 
transportation modes, these are incorporated into a 
travel demand forecasting model. The travel demand is 
then integrated into an urban passenger transport 
energy system optimization model to derive trends in 
urban transport electrification and carbon emissions. To 
explore the differences in the role of ride-hailing services 
under various scenarios, several policy scenarios are 
designed. 

2. METHODOLOGY 
This paper develops an integrated model to predict 

the transport electrification and energy consumption. 
We first conduct a Stated Preference (SP) survey to 
predict the choice probabilities for various modes of 
transportation. We then input the mode shares to a 
recursive model to forecast the travel demand of 
different mode. An energy system optimization model is 
finally applied to investigate the role of ride-hailing 
services in the transport electrification and energy 
consumption. The overall structure of the travel model is 
depicted in Fig. 1. 

2.1 Discrete choice model 

The discrete choice model has been widely used for 
investigating transport mode choice. The estimation 
cases of mode choice models for urban travel in Chinese 
cities mostly rely on the MNL model [16-17]. This section 
explains the stated preference survey method and 
discrete choice model modeling.  
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We select Nanjing as a case study to estimate the 
individual preference parameters. The data on the mode 
choice were gathered through an online survey which 
was disseminated in April 2023 via the Wenjuanxing 
platform, a Chinese company specialized in market 
research. A total of 530 survey responses were collected.  
We consider three attributes including travel distance, 
travel time, and the origin of travel to design synthetic 
trip scenarios. The survey comprises two sections. In the 
first section, the respondents are required to provide 
socioeconomic data, such as age, gender, occupation, 
income. They also indicated whether the residence is 
urban or suburban, preferred transport mode, which 
help us get their traveling habits. In the second section, 
respondents are asked to make choices between ride-
hailing services and other conventional modes of 
transport within hypothetical scenarios.  

We use the following formula to estimate the 
probability that a traveler chooses transport mode i in 
year y for synthetic trip r. 
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The parameters  ,  , and A in the equation can 

be estimated using Maximum Likelihood Estimation, as 
provided in equation (3). 
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In equation (4), the probability of the occurrence of a 
specific combination r, denoted as ,y r , can be 

determined. Since the travel combination r is uniquely 

determined by ( rD , rS ,
r

P ), ,y r can also be regarded 

as the joint probability of travel distance, location, and 

time. Combining equation (1) with equation (4), we can 
obtain the choosing probability ,y iSmode of mode i in year 

y as illustrated in equation (5). 

2.2 Travel demand forecast model 

The travel demand model serves to anticipate the 
travel requirements across various modes of 
transportation. In this model, the total demand for travel 
is forecasted through the adjustment of socioeconomic, 
environmental, technological, and other pertinent 
factors. Furthermore, through the integration of the 
probability prediction model derived from equation (1), 
the demand for each specific travel mode is precisely 
determined. 
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As shown in equation (7) - (8), the total travel 
demand for a specific year is jointly determined by 
socioeconomic factors and the overall travel cost. The 
total travel cost for year y is the sum of the costs for each 
travel mode in that year. 
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Equations (9) - (11) present the derivation process 
of

,y i
Pmode , the travel cost is obtained by summing the 

travel cost of each technology under each travel mode 
with the time cost of each travel mode. 

2.3 Transport energy system optimization model 

2.3.1 Objective function 

This paper establishes a bottom-up energy system 
optimization model with cost minimization as the 
optimization objective. It considers factors such as future 
population, residential travel intensity, average travel 
distance, etc. Detailed categorizations of fuel types and 
energy efficiency levels for different vehicle technologies 
in urban passenger transportation are provided. The 
optimization model delineates the competition between 
different modes of transportation and the competition 
among different fuel types for the same mode. 

 
Fig. 1 Model framework 
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The objective function of the model is to minimize 
the total annual cost as shown in equation (12). The total 
annual cost

y
TC includes the purchase cost 

, ,y i t
PTdevice , 

the annualized maintenance cost
, ,y i t

OMT , the annual fuel 

cost
, ,y i t

PTfuel , and the carbon emission cost
, , ,y i t f

PTghg . y 

denotes the year, i denotes the mode of travel, f denotes 
the different fuel types for a certain mode of travel, t 
denotes vehicle technology category. 
2.3.2 Constraints 

The model considers future development 
requirements, applies multiple constraints, and chooses 
a combination of technologies that minimizes the cost of 
the objective function. 
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Equations (16)–(17) represent the constraints on 
travel demand, stating that the total carrying capacity 
provided by all technologies in each mode must be no 
less than the total travel demand for the year. Equation 
(18) shows the constraint on the vehicle stock, 

, ,y i t
ST

represents the stock of vehicles for travel mode i and 
technology t in year y. Equation (19) represent the 
constraints on the penetration rate of electric vehicles in 
the update or addition of vehicles. 

3. SCENARIO DESIGN 
This part discusses the strategies for implementing a 

low-carbon urban transportation system in Nanjing. We 
predict the energy structure and transportation 
electrification to analyze the role of ride-hailing services. 
We establish a Business As Usual scenario (BAU), in 
which the original economic and social development 
patterns remain unchanged from 2020 to 2050. To 
capture the policy effects, we introduce scenarios 
involving the imposition of a carbon tax (TAX) and the 
promotion of public transportation (TRANSIT). The 
Nanjing government proposed a plan requiring all newly 

added ride-hailing vehicles to be electric starting from 
2020 [18]. This study further constructs a scenario 
(UNRESTRIVTED) in which the EV mandate is absent from 
the ride-hailing fleet, aiming to uncover the impact of 
this policy.  

To reveal the role of ride-hailing services, we 
introduce a Counterfactual scenario (COUN) where ride-
hailing services is not considered as an existing or future 
mode of transportation in Nanjing. This scenario is 
combined with the reference scenario and policy 
scenarios, allowing us to reveal the heterogeneity of the 
ride-hailing service under different circumstances. To 
capture the behavior effect, we further introduce a 
scenario where ride-sharing services are expanded in the 
presence of ride-hailing services. We assume that ride-
hailing services become more prevalent over time. The 
scenario settings and naming conventions follow Table 1. 
The study covers the period from 2015 to 2050, 
parameters are calibrated using data from 2015 to 2019. 

Table. 1 Scenario Setting and Naming. 

Scenario BAU TAX  TRANSIT  

Ride-hailing 
Scenario 

BAU TAX 
TRANSI-
NT 

Counterfactual 
Scenario 

BAU_COUN TAX_COUN 
TRANSIT
_COUN 

Ride-sharing 
Scenario 

BAU_RS BAU_RS BAU_RS 

No EV mandate 
Scenario 

UNRESTRIV
TED 

/ / 

4. RESULTS AND DISCUSSION 

4.1 The role of ride-hailing services in EV penetration 

Fig. 2 illustrates the technological composition of 
new vehicles for taxis, buses, and private cars under the 
counterfactual scenario. As shown in Fig. 2(a) and Fig. 
2(b), by 2050, all new taxis and buses will be EVs under 
the BAU scenario. This shift is primarily driven by 
Nanjing's policy, which mandates that all new vehicles 
must be pure electric starting in 2030 [18]. For private 
cars, the penetration rate of pure electric vehicles is 
projected to increase to 69.58%, with plug-in hybrid 
electric vehicles reaching 5.60%. Overall, the EV 
penetration rate among passenger vehicles is expected 
to reach 75.89%. Furthermore, the findings suggest that 
the implementation of carbon taxes and the promotion 
of public transportation policies can significantly 
accelerate EV adoption. Carbon taxes increase the cost 
of operating gasoline and diesel vehicles, encouraging 
consumers and businesses to transition to electric 
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alternatives. Meanwhile, investments in public 
transportation infrastructure reduce the dependency on 
private vehicles, further driving the shift toward electric 
mobility. 

 
Fig. 2 Technology composition of new vehicles 

 
Fig. 3(a) shows the change in the number of new EVs 

relative to the counterfactual scenario when ride-hailing 
services are introduced. The figure shows that the 
expansion of ride-hailing services contributes to an 
increase in the EV fleet, and this effect is further 
amplified by the introduction of carbon taxes and the 
promotion of public transportation. Fig. 3(b) depicts the 
change in EV penetration in the presence of ride-hailing 
services. Under the BAU scenario, the development of 
ride-hailing services increases EV penetration by 2.46%.  
The promotion of public transportation and the 
implementation of carbon taxes further enhance EV 
penetration, increasing it by 2.92% to 3.68%.  

It can be seen that ride-hailing services have created 
a competitive relationship with other modes of 
transportation, encroaching on their market share. 
Moreover, since all new ride-hailing vehicles are 
composed entirely of EVs, they not only meet travel 
demand but also further expand the penetration of EVs 
and promote the development of transportation 

electrification. In conclusion, the data clearly show that 
ride-hailing services are not only a complementary 
component of urban mobility but also a powerful catalyst 
for advancing the electrification of transportation. By 
strategically integrating these services with supportive 
policies, cities like Nanjing can significantly accelerate 
their progress toward carbon neutrality and energy 
sustainability. 

 
Fig. 3 Change in EVs compared to corresponding 

counterfactual scenario 

4.2 The role of ride-hailing services in energy structures 

As illustrated in Fig. 4(a) and Fig. 4(b), under the 
counterfactual scenario, the share of electricity in the 
energy mix increases from 1.77% in 2020 to 37.79% in 
2050. Compared Fig. 4(a) and Fig. 4(b) with other figures, 
we can observe that implementing carbon taxes and 
promoting public transportation can further encourage 
the growth of electricity's share in the total energy mix.  

By comparing the scenario with ride-hailing services 
to the counterfactual scenario, it is evident that ride-
hailing services can facilitate the transition to a cleaner 
energy mix. Implementing ride-hailing services can 
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increase the share of electricity consumption by 4.66%. 
This indicates that the presence of ride-hailing services 
plays a positive role in advancing the transition to a 
cleaner energy structure. Additionally, policy measures 
will promote the share of clean energy. In summary, we 
observe synergies between the development of ride-
hailing services and the implementation of the policy. 
Ride-hailing services and public transportation all 
compete with private cars, and the imposition of a 
carbon tax has raised the costs associated with fuel-
powered private cars, which together have contributed 
to the electrification of transportation. 

Furthermore, the positive feedback loops generated 
by these interventions highlight the potential for greater 
gains in transportation electrification. For instance, ride-
hailing services not only reduce the number of gasoline-
powered private cars on the road but also increase the 
demand for electric vehicles, further reinforcing the shift 
toward clean energy. The cumulative effect of these 
measures is a gradual yet significant reduction in reliance 
on fossil fuels, paving the way for the long-term 
sustainability of the transportation sector. 

 
Fig. 4 Energy mix (inner ring: counterfactual scenario 

under policies; outer ring: corresponding scenario with 
ride-hailing services) 

4.3 The role of ride-sharing services 

Fig. 5 depicts the impact of developing ride-sharing 
services on electricity consumption and EV penetration. 
As illustrated in Fig. 5(a), EV penetration initially falls 
below the BAU scenario but surpasses it after 2030. Fig. 
5(b) elucidates that in the ride-sharing scenario, the 
share of electricity consumption surpasses that of the 
BAU scenario after 2035. By 2050, compared to the BAU 
scenario, the development of ride-sharing services will 
lead to an additional 3404 EVs being used for ride-hailing 
services. Ride-sharing services reduce electricity 
consumption by encouraging shared travel, which 
decreases the demand for ride-hailing vehicles. 
However, as ride-sharing services grow, the proportion 
of trips made via ride-hailing gradually increases, driving 
up demand. This leads to an increased need for vehicles, 
further boosting EV penetration and the share of 
electricity consumption. It is evident that with the 
emergence of ride-sharing service, which influences 
traveler behavior, the impact of ride-hailing services on 
transportation electrification is further amplified.  

 
Fig. 5 The changes in the share of electricity 

consumption and EV penetration 
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4.4 The role of EV mandate 

Fig. 5 also presents a comparison between the 
UNRESTRIVTED scenario and the BAU scenario. By 
implementing EV mandate policies, EV penetration 
increases by 1.33% by 2050, and the share of electricity 
consumption expands by 4.28%. It is worth noting that 
compared to the UNRESTRICTED scenario, the BAU 
scenario reduces energy consumption by 5.27%. This is 
because EVs have higher energy efficiency and lower 
energy consumption compared to gasoline vehicles. We 
can conclude that enforcing technology proportion 
restrictions in ride-hailing services can promote EV 
penetration and accelerate the transition of the energy 
mix. By mandating that all new ride-hailing vehicles be 
electric, policymakers can significantly accelerate the 
transition towards a more sustainable and cleaner 
energy mix. Such policies not only benefit the 
environment by reducing greenhouse gas emissions but 
also support energy security by decreasing dependence 
on fossil fuels. In addition, the successful enforcement of 
these mandates could set a precedent for other sectors 
of the transportation industry, encouraging a faster 
transition to electrification across personal vehicles, 
public transportation, and even commercial fleets. 

5. CONCLUSION 
Understanding the impact of Nanjing's policies on the 

electrification of passenger transportation systems is 
crucial for ensuring a sustainable energy transition and 
effectively responding to carbon peaking and carbon 
neutrality targets. This paper develops a travel 
probability prediction model using discrete choice 
methods to forecast travel demand, which is then 
integrated with an energy system optimization model. 
Additionally, counterfactual scenarios were introduced 
to assess the impact of the absence of ride-hailing 
services and evaluate the effects of various travel-related 
policies. The role of ride-sharing services was also 
examined from the perspective of traveler behavior. 

Electric vehicles demonstrate higher energy 
utilization efficiency compared to traditional fuel 
vehicles, and ride-hailing services have promoted the 
development of transportation electrification, increasing 
the penetration of EVs and the share of electricity in total 
energy consumption. This contributes to the transition of 
road transportation towards cleaner energy sources. The 
implementation of carbon tax policies and the 
development of public transportation are proactive 
measures for promoting transportation electrification, 
complementing the role of ride-hailing services. 

Moreover, carbon tax policies have proven to be more 
effective than policies focused on developing public 
transportation. 
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