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ABSTRACT 
 Accurate load forecasting is crucial for efficient 
energy management, particularly due to the increasing 
adoption of renewable energy sources and the growing 
need for grid stability. This study introduces an 
autoregressive transformer encoder-decoder model that 
advances residential electricity load prediction and 
synthesis. Unlike the conventional models, our proposed 
model utilizes temperature and calendar information as 
primary inputs and can generate an electricity load 
without relying on the past load. This model's design is 
rooted in the observation that temperature and calendar 
context sufficiently capture residential electricity 
consumption dynamics. By excluding the reliance on past 
load data, our model is able to synthesize electricity load 
for arbitrary temperature and calendar scenarios in 
addition to effectively predicting the future load. This 
synthesizing capability is invaluable for optimizing the 
planning and operation of residential energy systems, 
including photovoltaic systems and batteries. 
Experimental results using real-world electricity load 
data of residential buildings demonstrate the 
effectiveness of our transformer-based model, offering a 
robust framework for future load prediction and 
synthesis under varying conditions. 
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1. INTRODUCTION 
Accurate load forecasting is crucial for efficient 

energy management [1]. With the proliferation of 
renewable energy and the push towards 
decarbonization, the uncertainty in energy supply has 
increased. As a result, accurately predicting the balance 
between demand and supply to maintain the stability 
and reliability of the power grid has become even more 
critical. In the residential sector, electricity load varies 
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due to factors such as seasons, weather, and calendar 
events (e.g., weekdays and holidays) [2, 3, 4]. Therefore, 
precise load forecasting that considers these factors is 
essential for effective energy management. 

Particularly in recent years, there has been an 
increase in residential buildings equipped with 
photovoltaic (PV) systems and batteries [5]. For these 
buildings, accurate load forecasting can optimize the 
costs associated with PV and battery installations, 
providing significant economic benefits to consumers. 
Moreover, achieving precise load forecasting could 
encourage the adoption of PV systems and batteries in 
residential buildings that do not yet have them. This 
would benefit the overall energy system by increasing 
the share of renewable energy sources and enhancing 
the system’s capacity to absorb these sources, leading to 
greater sustainability and efficiency. 

Furthermore, synthesizing load data for specific 
buildings is essential for optimal planning of PV and 
battery sizes. By generating accurate load profiles based 
on various temperature and calendar scenarios, energy 
planners can make informed decisions about the most 
efficient and cost-effective sizes for PV systems and 
batteries. This tailored approach ensures that the energy 
needs of the building are met while maximizing the 
economic and environmental benefits. Accurate 
synthesized load data can also help evaluate different 
scenarios and plan for peak demand periods, ultimately 
leading to more resilient and sustainable energy systems. 

Because electricity load forecasting is of paramount 
importance for residential energy management, a 
significant amount of research has been conducted in 
this area. Various models and methodologies have been 
developed, leveraging data such as historical load 
records, weather forecasts, and socio-economic factors 
to enhance prediction accuracy. Some studies have 
employed classical methods such as ARIMA [6], while 
others have used regression trees for high-precision 
forecasts [7]. More recent approaches include 
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probabilistic forecasting using LSTM [8], and with the 
advancement of self-attention mechanisms, 
transformer-based models have also been explored [9].  
However, most existing models typically use past load 
data as inputs. Considering that residential electricity 
load is strongly influenced by weather and calendar 
information, such as weekdays and holidays, rather than 
by past loads, this approach may have limitations in 
accurately predicting future consumption. 

We observed that residential building loads are 
predominantly influenced by temperature and calendar 
data. This observation led us to conceive of residential 
buildings as a model that takes temperature and 
calendar information as inputs and outputs electricity 
load. In this study, we propose an autoregressive 
transformer model that predicts future load based solely 
on temperature and calendar information, without 
relying on past load data. We chose the Transformer 
encoder-decoder primarily because it has demonstrated 
high performance in other modalities, such as text and 
images [10, 11]. This model is able to accurately predict 
future loads and can also generate loads for all buildings 
in the dataset, using the same model for each building. 
Furthermore, due to its design, the model can synthesize 
residential load for arbitrarily given temperature and 
calendar scenarios. This capability is particularly valuable 
for optimizing PV and battery sizes and enhancing overall 
energy system resilience.  

2. MATERIAL AND METHODS  

2.1 Time-Series Prediction and Synthesis 

This study proposes a time-series prediction or 
synthesis not relying on a past sequence. Fig. 1 illustrates 
the distinction between the conventional approach and 
our proposed approach. On the left side, the 
conventional approach is depicted. Here, the model 
predicts future target values, denoted as 𝒙𝒕"𝟏:𝒕"𝑻, using 
both past values 𝒙𝟏:𝒕  and relevant covariates 𝒔𝟏:𝐭"𝐓 . 
On the right side, our proposed approach is shown. In 
this approach, the model generates future values 
𝒙𝒕"𝟏:𝒕"𝑻  based on the condition 𝒄𝒕 . 𝒄𝒕  is data or 
information available at time 𝑡 and can include 𝒔𝟏:𝐭"𝐓. 

2.2 Transformer Encoder-Decoder-Based Model 

We propose a Transformer encoder-decoder-based 
model to predict and synthesize daily residential load 
profiles, as depicted in Fig. 2. The model, capable of 
handling any timeframe, focuses on a three-day target 
(𝑇 = 3) for this study. 

The model takes several inputs for each residential 
building: a building ID, a seven-day temperature history, 
a three-day temperature forecast of target days, and 
information on weekdays and holidays for the target 
days. These inputs are transformed into latent 
representation 𝒛𝒄, where the temperature sequence is 
processed through a linear layer and other data through 
lookup table embeddings. The Transformer encoder 
processes 𝒛𝒄 to generate a latent representation 𝒛𝒆𝒏𝒄. 

The decoder employs causal self-attention, 
generating daily load data for the target days from 
learnable <start of sequence> (<sos>) tokens in an 
autoregressive manner. This <sos> token can optionally 
be replaced by a context token, which is a latent 
representation of past loads. The latent representation 
output from the decoder is mapped to the target load by 
another linear layer. The cross-attention layers within 
the decoder compute attention between the encoder 
outputs 𝒛𝒆𝒏𝒄 and the generated sequences, facilitating 
accurate load prediction based on the input conditions. 

The Transformer architecture comprises two 
subnetworks in both the encoder and decoder: self-
attention and feed-forward. An additional subnetwork in 
the decoder includes cross-attention, enhancing 
interaction between encoder outputs and decoder 
predictions. Each sublayer starts with layer 
normalization (pre-norm architecture) and has a residual 
connection. 

The model operates with a low-dimensional latent 
space (dimension=32) to enhance learning efficiency, 
configured with 6 layers and 8 attention heads in both 
the encoder and decoder. 

2.3 Dataset 

In this study, we utilize half-hourly load data 
collected from more than 400 residential buildings in 
Japan over a period of about two years. The sizes of the 
residential buildings vary, and so do their load 
magnitudes. Weather forecast data and actual weather 
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data were also collected. Together with the load data, 
these form the dataset used in this work. Data from the 
last 30-day period in the dataset are designated as the 
test split, while the remainder is used for training.  

2.4 Model Training and Evaluation 

For the model training process, mean squared error 
(MSE) is employed as a loss function. The model is 
trained for a total of 500,000 steps with a batch size of 
256. Adam is employed as an optimizer with a learning 
rate of 8e-4. 

To stabilize the training and improve the model's 
performance, the temperature and load data are 
normalized across the entire training dataset using the 
maximum and minimum values. The same maximum and 
minimum values are used during testing to normalize 
and de-normalize inputs and outputs.  

3. RESULTS AND DISCUSSION 
We evaluated the trained model’s prediction 

accuracy using approximately 12,000 test instances, 
achieving a root mean squared error (RMSE) of 0.0076 
and a mean absolute error (MAE) of 0.0045 on 
normalized data, demonstrating high precision in the 
forecasts.  

To further assess the predictive capability of our 
model, randomly selected qualitative results are 
presented in Fig. 3. While some instances reveal 
challenges in accurately predicting troughs and peaks in 
the loads (as seen in the top left and top third from left 
plots), other examples successfully capture complex load 

patterns, accurately reflecting both the troughs and 
peaks. It is noteworthy that the plot in the bottom right 
illustrates how the model accurately predicts the load on 
the third day (time step >= 96), where the load pattern 
deviates from the previous days. Moreover, the 
proposed model handles a wide range of load scales, 
from as low as 10 kW to over 200 kW, as shown in Fig. 3. 

To evaluate the model’s ability to synthesize load 
profiles, we conducted an experiment where the model 
generated load output for a building under various 
temperature conditions. The model synthesized the load 
for five different temperature scenarios, each with an 
average temperature over three days: 1.28°C, 6.28°C, 
14.28°C, 22.28°C, and 38.28°C. These temperature 

 
Fig. 2 Overview of our proposed method. 

 

 
Fig. 3 Visualization of Prediction Results. 
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profiles were created by adding constant values to a 
temperature profile sampled from the test dataset. Fig. 
4 presents the results of the synthesis. Across all 
temperature scenarios, the model successfully captures 
typical residential load patterns, characterized by an 
increase in load during the morning, a slight decrease 
during the day, and a peak in the evening and night. 

Additionally, the model effectively reflects 
variations in load patterns across different temperature 
scenarios. For the moderate temperature scenario 
(14.28°C), the load remains the lowest among the five 
scenarios throughout the day. In contrast, both high and 
low-temperature scenarios (38.28°C and 1.28°C, 
respectively) show higher loads. The load during the 
high-temperature scenario remains elevated throughout 
the day, whereas the load in the low-temperature 
scenario follows a distinct pattern, with higher demand 
in the morning and evening and lower demand during 
the daytime. These differing patterns reflect varying 
heating and air conditioning usage based on 
temperature conditions. 

4. CONCLUSION 
This study demonstrates the effectiveness of an 

autoregressive Transformer-based model that does not 
rely on past load data in generating residential load 
profiles. Utilizing data from more than 400 residential 
buildings over about two years, the model showed high 
accuracy and stability for predicting loads. Importantly, 
the model’s design also enables the synthesis of load 
profiles under arbitrary temperature and calendar 
conditions. Despite some challenges in predicting 
troughs and peaks in several cases, the overall 
performance metrics, RMSE and MAE, confirm the 
model’s robustness. Future efforts will focus on 
improving the predictive performance and further 

exploring the model’s potential for synthesizing load 
profiles, thus extending its applicability. 
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Fig. 4 Results of load synthesis for different 

temperature scenarios. 


