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ABSTRACT 
 The air supply subsystem is critical for proton 
exchange membrane fuel cells, determining the output 
performance of the stack. By controlling the speed of the 
air compressor and the opening of the back pressure 
valve, it is possible to achieve appropriate regulation of 
air supply pressure and mass flow rate. However, this 
process presents challenges due to disturbances and the 
coupling of multiple variables. This study employs the 
model predictive control algorithm to address these 
issues because of its strong decoupling capabilities and 
robustness. Initially, an M‐sequence is designed to 
identify the system and obtain the predictive model for 
the MPC. Based on feedback output, a Kalman filter is 
then used to estimate the optimal unmeasurable state 
information. Subsequently, the MPC controller is 
designed to obtain the optimal control output under 
various constraints. Finally, by using a traditional PID 
controller as a control group, the performance of the 
proposed MPC controller based on Kalman state 
estimation is analyzed under current step change 
conditions. 
 
Keywords: fuel cell, model predictive control, Kalman 
estimation  

1. INTRODUCTION 
Proton exchange membrane fuel cells (PEMFCs) have 

been used in vehicle applications in recent years because 
of its advantages of low emission, high efficiency and fast 
refueling [1]. As one type of battery, fuel cells generate 
electricity through chemical reactions between 
hydrogen and oxygen [2]. For the purpose of improving 
the output power and increasing the service life of stack, 
fuel cell engines need to keep the operating parameters 
such as stack temperature, gas humidity, mass flow rate 
and pressure in the appropriate state. The air supply 
system is mainly used to provide the necessary reaction 
gas for the cathode. Two key parameters of gas supply, 
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namely air mass flow rate and pressure, are essential for 
the efficient and healthy operation of fuel cell systems 
[3,4]. As a typical multi‐input‐multi‐output coupling 
system [5], the high‐pressure fuel cell air supply system 
has nonlinearity and uncertainty. Designing 
corresponding control algorithms to ensure its key 
parameters work under predetermined conditions is 
necessary. 

Many research studies have focused on the 
regulation of the air supply system. Model predictive 
control(MPC) algorithm has also been used in the 
parameter control of fuel cells because of its excellent 
control performance and relatively simple design 
process. Abdullah et al. [6] used constrained MPC to 
optimize oxygen excess ratio by solving the voltage of air 
compressor. Hahn et al. [7] designed MPC to solve the 
optimal operating conditions with the goal of minimizing 
the operating power. Hu et al. [8] designed MPC to 
control oxygen excess ratio by fusing multiple 
equilibrium point linearization models. There are also 
some studies combining model predictive control with 
other control methods to achieve good performances [9‐
11]. 

 In this paper, the model prediction model is 
established by means of system identification, which is 
used to solve the MIMO pressure and flow coupling 
cooperative control problem. To solve the problem of 
state estimation of unmeasured state variables, this 
paper proposes to combine Kalman filter with model 
predictive control to solve the closed‐loop problem. The 
introduced noise modeling can effectively improve the 
accuracy of the identification model, thus making the 
control algorithm performing better. 

2. METHODOLOGY  

2.1 Model of the air supply system 

The main components of air supply system for 
PEMFC include air filter, air compressor, intercooler, 
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humidifier, back pressure valve, etc. In this paper, the 
coupling control of the pressure and flow of the stack is 
realized by controlling the speed of the air compressor 
and the opening degree of the back pressure valve. The 
system is shown in Fig.1. It is a typical fuel cell air supply 
system structure 

Based on previous work [12], a global representation 

of air supply system was established. In this paper, the 
M‐sequence identification method was used to identify 
a 150kw high‐pressure fuel cell air supply system. We 
choosed a steady‐state point for the following work. For 
450A‐current, the steady‐state mass flow rate is 
153.19g/s and the pressure is 241.1kpa according to the 
experimental results, corresponding to the air 
compressor speed of 64711r/min and the backpressure 
valve opening degree of 14.54%. First‐order inertia link 
of the following form is selected: 

 

Where , , , , , , ,  are the 
parameters of the mapping relationship; ,  are mass 
flow rate(g.s‐1) and pressure(kpa); ,  are the air 
compressor speed(r/min) and the backpressure valve 
opening degree(%),so that the linear model of the 
equilibrium point is established. It is transformed into 
the state space equation form to further design the 
model predictive controller. Finally, the following results 
are obtained In the form of four state variables, two 
inputs and two outputs: 

 

Where 、 、 、  are state variables.  
Taking the previously designed M‐sequence as input, 

the output of the equilibrium point identification model 
and the actual model were compared, and the 
agreement of pressure and mass flow rate is 95% and 
93%, respectively. Therefore, the linear model near the 
equilibrium point above is reasonable. 

This result will be used in the subsequent design. 

2.2 Model Predictive Control with state Estimation  

Model predictive control has excellent dynamic 
control performance and multi‐variable control ability. 
The principle is that at each sampling time, the objective 
function is established through the prediction model, 
and the quadratic programming problem is subsequently 
solved online, and the first element of the obtained 
control sequence is applied to the controlled plant. At 
the next sampling time, it needs to use the new state 
value as the initial condition of the prediction system at 
this time and solve it again. If the state variables are not 
completely measurable, a state estimator needs to be 
designed. 

The state variables in Eq. (2) are the intermediate 
variables of the identification model, which cannot be 
directly transmitted to the model predictive controller by 
output feedback in the real system. In order to solve the 

 
Fig. 1 Air supply system 
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estimation problem of unmeasurable state variables in 
air supply system, this paper uses Kalman filter to 
process the measured value of the actual system output 
to obtain the state quantity. Fig.2 is the control structure. 
According to the demand current, the reference pressure 
and the reference flow of the model predictive controller 
are obtained by looking up the table online according to 
the experimental calibration table. 

 
Fig. 2 The proposed control structure 

2.2.1 Kalman filter 

According to Eq. (2), 、 、  are defined as 
follows. 

Eq. (2) is further transformed into a discrete state 
space equation, and process noise and measurement 
noise are added to the model, which is expressed as 
follows: 

Here, we assume that the process noise  and 
measurement noise  follow the Gaussian distribution 
with the expectation of 0, and the process noise and 
measurement noise are uncorrelated. 、 、  are 
the model system matrix, control matrix, and output 
matrix respectively. 、  are 、  sampling 
moments, respectively. 

Kalman filter needs to obtain the output of the actual 
air supply system model at the current time and the 
input of the actual system at the previous time to solve 
the state variables at the current time. Usually, Kalman 
filter is divided into two parts, namely, the state 
prediction and the state updating. 

The state prediction part is: 
 

 
And the state updating part: 

 

 

 

where  stands for the priori estimated state and 
 is the posterior estimated state. Because the 

posterior information  is added to modify it, the 
estimated values are closer to the real state variables. 

 is the Kalman gain matrix updated at each sampling 
moment,  stands for the posterior error covariance 
matrix of ,  represents priori error covariance 
matrix of ,  is the variance of measuring noise , 

 is the variance of process noise . We assume that 
,   and  are diagonal matrices of the 

corresponding covariance dimensions. The variance of 
the error will be gradually reduced through the feedback 
of the real model measurements. 

2.2.2 Model predictive control 

After obtaining the state estimate , It can be used 
as the initial condition of the prediction model to design 
the mpc controller through the mathematical model of 
the system. Here, we solve the problem with an 
incremental form of MPC. 

Define , ： 

 

Define the state quantity  as follows： 

Rearrange the state space equation in incremental 
form, which is defined as follows: 

 

Let the current sampling time be , the size of the 
prediction window be  sampling intervals, and define 

 as the prediction time domain. In the prediction time 
domain, from sampling time , there are manipulated 
variables with  sampling intervals, and  is defined 
as the control time domain. 

Define  and : 

 

Where  stand for system outputs of
 steps,  stand for system 

input changes of  steps. 
Eq. (12) is used to predict  steps, and the output 

equation can be obtained by arranging it into a matrix 
expression as follows: 
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Where  are known values calculated from the 
estimated values ,  and output feedback values 

 from fuel cell model: 
 

We define reference values as . Here, we smooth 
the reference track, that is, set the reference track to 
smoothly transition from the output of the previous 
moment to the set value according to the predicted step 
size. The objective function  can be divided into two 
parts,  and  are the weights to be determined, and 
the purpose of predictive control is to solve the 
manipulated variables to minimize the value of the 
objective function: 

 

Combining Eq.(14) and Eq.(15), the optimization of 
the objective function is transformed into the quadratic 
programming problem with variable . We consider 
the constraints of the actual air supply system. The 
actuator air compressor and back pressure valve have 
working range and change rate limit. The following 
formula should be added to the solution: 

s.t.   

Where ,  stand for the speed limit of the 
air compressor and the opening limit of the back 
pressure valve , ,  stand for the maximum 
change range within the step. 

3. RESULTS AND DISCUSSIONS 
The key parameters of model predictive controller 

include control interval, prediction time domain, control 
time domain, error weight and control weight. The 
choice of the control interval is directly related to the 
update frequency of the control signal. When the control 
interval is set to be small, the control system will have a 
high real‐time response ability, but too frequent control 
signal update may exceed the controller's computational 
processing ability, and then affect the stability and 
performance of the whole system. Enlarging the 
prediction time domain and the control time domain 
means more comprehensive prediction of future 
changes. However, it will also increase the complexity 
and time required to solve the problem, posing a 
challenge to the application scenarios with high real‐time 

requirements. As diagonal matrices, the error weights 
and control weights play a role in balancing the 
importance of error and control terms. Increasing the 
control weight appropriately can effectively reduce the 
fluctuation of the control signal and make the system 
output more stable. However, this needs to ensure 
system performance while avoiding excessive smoothing 
of manipulated variables at the expense of system 
response speed and adaptability. 

The performance of the designed controller is 
tested by simulation. We first select the current step test 
in fig.3 near the equilibrium point when the initial state 
is steady.  

 
Fig. 3 Current condition near the equilibrium point 

The pressure and flow rate reference values are 
obtained from the input current look‐up table, which are 
further processed based on the change rate limit of the 
actual system. The control interval is 0.01s, the 
prediction time domain is 20, the control time domain is 
10, the error weight is 10000, and the weight of the 
control change rate is 10. Compared with the 
feedforward‐PID algorithm[13] under the same test 
conditions, the tracking effect is obtained as follows. 

  
Fig. 4 Mass flow rate control results near the 

equilibrium point 
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Fig. 5 Pressure control results near the equilibrium point 

It can be seen that MPC algorithm is obviously 
better than PID in the range near the equilibrium point, 
and there is no steady‐state error. Calculating the MSE of 
both algorithms with reference values, the MPC 
algorithm is 0.498 in terms of flow rate, which is 32.7% 
lower than PID, and 0.335 in terms of pressure, which is 
59.3% lower than PID. 

Then, considering that the equilibrium point model 
may have errors in the entire nonlinear working region, 
we verify the control effect in the entire current working 
range to test the robustness of the algorithm against the 
model errors. Based on the unstarted state of the fuel 
cell system, the current step input in fig.6 is provided 
from zero time, so the starting phase and step dynamic 
response performance of the fuel cell system can be 
observed in fig.7 and fig.8.  

 
Fig. 6 Current condition in full range 

In the start‐up phase, MPC can complete the start‐
up in 4s, which has a faster response speed than PID.  

In the current step condition, MPC can quickly track 
the reference value. Furthermore, it can be seen from 
the enlarged figure that MPC has smaller pressure flow 
fluctuation and shorter time to reach steady state than 
PID.  

 
Fig. 7 Mass flow rate control results in full range 

 
Fig. 8 Pressure control results in full range 

The MSE values of the two control algorithms 
compared with the reference values were calculated. For 
the pressure curve, the value of MPC is 1.440, 57.2% 
lower than PID. For the flow rate curve, the value of MPC 
is 1.968, 39.0% lower than PID. 

The above simulation results show that the model 
predictive controller based on Kalman state estimation 
designed in this paper has a excellent control effect. For 
the current region far from the equilibrium point, 
although the control effect is slightly worse than that 
near the equilibrium point, it can still maintain zero 
steady‐state error and fast response speed. In the future, 
multiple equilibrium point models can be considered to 
design MPC, which may achieve better control over the 
entire operating range. 

4. CONCLUSIONS 
In this paper, the combination of Kalman filter and 

model predictive control is proposed for the cooperative 
control of pressure and flow in air supply systems. Firstly, 
the physical model of the air supply system is 
established, and the M‐sequence is selected to identify 
the model. Afterwards, the noise model is introduced , 
so Kalman filter can estimate the unmeasurable state 

Corresponding to current step at 
40s.Reference pressure is almost 
constant at high currents 

Corresponding to current step at 
40s.Reference pressure is almost 
constant at high currents 
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variables obtained from the identification. Furthermore, 
the manipulated variables of air compressor speed and 
backpressure valve opening can be solved by model 
predictive control. Simulation results show that the 
proposed method outperforms the PID method. In 
addition, the controller parameters are discussed, and 
the performance of the controller can be intuitively 
balanced by adjusting the key parameters appropriately. 
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