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ABSTRACT 
 Energy management in deep space exploration poses 
significant challenges for the stable and safe operation of 
thermal management systems. The critical heat flux 
(CHF) in flow boiling, as a key safety threshold for two-
phase heat transfer systems, must be thoroughly 
investigated. The current work introduces a data-driven 
dimensional analysis method that can automatically 
discover characteristic dimensionless numbers from 
physical data. This approach addresses the issues of non-
uniqueness and the inability to measure the importance 
of results inherent in the classic Buckingham Pi theorem. 
By collecting CHF datasets of different fluid media under 
both Earth's gravity and space microgravity conditions in 
vertical tubes, the algorithm identified the most 
influential dimensionless number affecting the boiling 
number Bochf during boiling crises and determined the 
corresponding exponential scaling relationship. This led 
to the development of a new CHF predictive correlation 
applicable across different fluids and conditions. 
Comparison results with several other models indicate 
that the proposed correlation offers higher accuracy and 
can potentially be used in the design and optimization of 
high-power thermal management systems for space, 
lunar, and Martian environments. 
Keywords: microgravity, critical heat flux, data-driven 
dimensional analysis, scaling law 

NONMENCLATURE 

Abbreviations  
CHF Critical heat flux 
GELU Gaussian error linear units 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
MLP Multilayer perceptron 
MSE Mean squared error 
Symbols  
Bo Boiling number 
Bd Bond number 
DR Density ratio 
g Gravity acceleration [m / s2] 
G Mass flux [kg / m2s] 

 
# This is a paper for the 16th International Conference on Applied Energy (ICAE2024), Sep. 1-5, 2024, Niigata, Japan. 

Lh Tube heated length [m] 
KR Kinetic energy to phase change energy 

ratio 
Pr Prandtl number 
q'' Heat flux [W / m2] 
Re Reynolds number 
We Weber number 
π Dimensionless number 
α Thermal diffusivity [m2 / s] 
μ Dynamic viscosity [Pa s] 
ρ Density [kg / m3] 
σ Surface tension coefficient [N / m] 

1. INTRODUCTION 
The ambitious goals of deep space exploration, 

characterized by increasing distances and mission 
durations, pose significant challenges to the stable 
power supply of spacecraft [1]. Given the limited payload 
and space constraints of cosmic missions, there is a 
critical need for highly energy-efficient thermal exchange 
systems. Flow boiling heat transfer, renowned for its high 
heat transfer coefficients, is considered a promising 
technological pathway for space heat exchangers. To 
ensure the safe and efficient application of flow boiling 
heat transfer in space, it is imperative to thoroughly 
investigate the critical heat flux (CHF) under microgravity 
conditions. This is essential to avoid the severe decline in 
heat transfer coefficient and the abrupt rise in wall 
temperature that occurs when the CHF is exceeded. 

Space missions, from orbital to lunar to Martian, 
operate under varying gravitational conditions, ranging 
from microgravity (µg) to 0.17g and 0.38g, respectively. 
These conditions differ significantly from Earth's gravity, 
resulting in distinct buoyancy effects that impact flow, 
heat, and mass transfer processes. Numerous 
experiments conducted in orbit, drop tower microgravity 
experiments, and aircraft parabolic flight tests have 
demonstrated that the CHF of flow boiling under 
microgravity conditions differs from that under normal 
gravity. This underscores the necessity for new 
predictive tools tailored to microgravity environments. 

Current methods for predicting the CHF of flow 
boiling primarily include mechanistic models [2] and 
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empirical correlations [3]. Mechanistic models rely on 
theoretical assumptions and phenomenological analyses 
of high-resolution experiments, such as simplifying 
assumptions about liquid films and bubble shapes based 
on high-speed imaging results. These models are highly 
dependent on the researcher's expertise and are often 
costly, especially under microgravity conditions. 
Moreover, most mechanistic models have not been 
validated for microgravity conditions, limiting their 
applicability. Empirical correlation methods, on the other 
hand, depend on the Buckingham Pi theorem [4] to 
select dimensionless variables and fit the relevant 
correlations. Both methods partly rely on heuristic 
approaches, such as trial-and-error methods, which 
struggle to provide optimal solutions for complex multi-
parameter problems. Therefore, there is a pressing need 
for more robust and accurate predictive models that rely 
less on empirical assumptions and more on data-driven 
insights. 

Advancements in data science offer new potential 
solutions for complex engineering and physical 
problems. Constantine et al. [5] proposed a data-driven 
dimensional analysis algorithm that combines the 
Buckingham Pi theorem with the active subspace 
method, enabling the automatic discovery of the most 
influential dimensionless numbers from high-
dimensional data. This approach addresses previous 
issues related to the non-uniqueness and importance 
quantification of dimensionless numbers in the 
application of the Buckingham Pi theorem. The success 
of this method in various fields highlights its potential for 
addressing complex problems in heat transfer and fluid 
dynamics. For instance, Jofre et al. [6] identified the 
dominant dimensionless numbers in heat transfer in 
irradiated particle-laden turbulent flow using data-
driven methods. Similarly, Hang et al. [7] applied this 
approach to the dynamics in a 3D print molten pool, 
while Xu et al. [8] and Zhang et al. [9] further combined 
this method with neural networks and clustering 
algorithms, applying it to the dimensional analysis of 
drag coefficients of a flexible body and the spread of oil 
slicks on a calm sea. 

Building on these advancements, the current work 
analyzes the CHF of flow boiling under microgravity 
conditions using a data-driven dimensional analysis 
algorithm. By identifying the dominant dimensionless 
numbers and corresponding scaling laws, a new 
dimensionless predictive model is developed. This model 
not only addresses the limitations of existing predictive 
methods but also demonstrates superior accuracy 
compared to other relevant correlations. This innovative 

approach offers a promising advancement in the 
predictive modeling of flow boiling CHF in microgravity, 
potentially contributing to the broader goal of enhancing 
efficient and safe thermal management in deep space 
missions. 

2. DATA-DRIVEN DIMENSIONAL ANALYSIS 

2.1 Methodology 

According to the Buckingham Pi theorem, a 
dimensionless dependent variable Y can be expressed in 
terms of at most n = m – k dimensionless numbers of m 
dimensional variables with k dimensions q = [q1, q2, …, 
qn]: 
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Here, x represents the dimensionless numbers after 
applying the logarithm operation, and W is the matrix of 
exponents for the dimensionless numbers, determined 
by dimensional homogeneity from the null space of the 
following homogeneous linear equation system: 

 
k n=DW 0  (2) 

The matrix D is a k × m dimensional matrix, where 
each row corresponds to a dimension and each column 
corresponds to a unit of a physical quantity. For instance, 
if the dimensions from top to bottom are length, mass, 
and time, the column for density would be represented 
as [−3, 1, 0]T. 

Upon obtaining W, a dimensionless representation 
of x is derived; however, this representation may not be 
the most suitable for the problem at hand. The active 
subspace method is employed to analyze the sensitivity 
of the dimensionless variable x with respect to Y, i.e., 
gradient analysis. For the function Y = g(x), the following 
covariance matrix can be computed and eigenvalue 
decomposition performed: 

 ( ) ( )T

T
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=
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Each column of matrix S represents the principal 
directions of variation in g, with the corresponding 
eigenvalues Λ indicate the extent of variation. Based on 
the decomposed eigenvector matrix, a new 
dimensionless representation can be obtained: 

 =Z WS  (4) 
The matrix Z satisfies the dimensional homogeneity 

equation DZ = 0, where each column represents a 
dimensionless number and each element denotes the 
exponent of a physical quantity. Furthermore, from left 
to right, each column represents dimensionless numbers 
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with decreasing influence on Y. The first column of the 
matrix indicates the dominant dimensionless number, to 
which Y is most sensitive. 

In the context of a given dataset, the data-driven 
dimensional analysis algorithmic workflow illustrated in 
Fig. 1 is employed to identify the aforementioned 
dominant dimensionless numbers. 

 
Fig 1 Algorithm of the data-driven dimensional analysis 

2.2 Dataset description 

Data from both microgravity [10-13] and Earth's 
gravity [14-18] environments are utilized to uncover 
unified physical laws for potential applications in varying 
gravity conditions such as those found in space, on the 
Moon, and on Mars. 

The microgravity dataset comprises 135 data points 
of FC-72 fluid under microgravity conditions on the 
International Space Station, collected from five sources, 
as detailed in Table 1. To ensure accuracy, only data 
values provided in tables or text are included, excluding 
coordinate data extracted from images. The microgravity 
dataset features a hydraulic diameter of 3.33 mm, a 
heating length of 1148 mm, pressure ranges from 121.16 
to 182.79 kPa, inlet thermodynamic quality from −0.53 
to 0.50, and mass flux from 180.04 to 3200 kg/m²s. For 
Earth's gravity conditions, the study uses 24 vertical flow 
CHF data points of FC-72 fluid from four sources and a 

publicly available dataset of 1438 data points of water 
fluid vertical tube flow processed by Yang et al. [19] 
(initially published by Zhao et al. [14]). The Earth's gravity 
FC-72 data have a hydraulic diameter of 3.33 mm, a 
heating length of 1148 mm, pressure ranges from 115.80 
to 191.20 kPa, inlet thermodynamic quality from −0.41 
to 0.52, and mass flux from 190.8 to 3200 kg/m²s. 

Table 1 Data source 
Author 
(year) 

Gravity 
condition 

Fluid Channel 
Geometry 

#. 

Mudawar et 
al. [11] (2023) 

μg  
(≈ 10-6ge) 

FC-72 Rectangle 36 

Mudawar et 
al. [12] (2023) 

μg  
(≈ 10-6ge) 

FC-72 Rectangle 26 

Mudawar et 
al. [10] (2023) 

μg  
(≈ 10-6ge) 

FC-72 Rectangle 46 

Mudawar et 
al. [13] (2024) 

μg  
(≈ 10-6ge) 

FC-72 Rectangle 27 

O’Neill et al. 
[15] (2018) 

ge FC-72 Rectangle 4 

Devahdhanus
h et al. [17] 
(2022) 

ge FC-72 Rectangle 9 

Darges et al. 
[16] (2022) 

ge FC-72 Rectangle 2 

Devahdhanus
h et al. (2022) 

ge FC-72 Rectangle 9 

Zhao et al. [14] 
(2020) 

ge Water Circle 1438 

All    1597 

The physical parameters and properties within the 
dataset are employed to predict the boiling number 
representing the CHF, denoted as Bochf = q''chf / Ghfg. 
Through data-driven dimensional analysis, the most 
influential dimensionless variable affecting Bochf is 
identified. The dimensional physical quantities used as 
inputs can be categorized as follows: 

(1) Geometric Parameters: hydraulic diameter d, 
equivalent heated diameter dh and heated length Lh. 

(2) Material properties: saturated liquid density ρf, 
saturated vapor density ρg, density difference ∆ρ = ρf − 
ρg, saturated liquid viscosity μf, latent heat hfg, thermal 
diffusivity of saturated liquid αf, and surface tension 
coefficient σ. 

(3) Thermodynamic state: Enthalpy difference 
between the saturated vapor and inlet condition ∆h = 
hsat, g − hin. 

(4) Flow Parameters: mass flux G and gravitational 
acceleration g. 

The dimensional matrix for these input variables is 
shown in Eq. (5), where D is utilized to compute a null 
space W, which reduces the dimensionality of the 13 
dimensional variables to 10 dimensionless numbers. 
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2.3 Neural network structure and training process 

A multilayer perceptron (MLP) neural network is 
employed to fit the mapping relationship between the 14 
dimensionless inputs and Bochf. The network comprises 
an input layer, hidden layers with node counts of [32, 64, 
64, 32], and a linear output layer. The activation function 
used is the Gaussian Error Linear Unit (GELU) [20], which 
is expressed as: 

 ( )GELU 1 erf
2 2

x x
x

  
= +  

  

 (6) 

where erf(∙) is the Gauss error function. 
The loss function for network is defined as the mean 

squared error (MSE) with the dimensionless dependent 
variable Bochf, as shown below: 

 ( ) ( )
2

pre pre true

1

1 N

i

MSE Bo Bo Bo
N =

= −  (7) 

Here, the subscripts "pre" and "true" represent the 
network's predicted and true values from the dataset, 
respectively. 

To ensure an accurate evaluation of the network's 
fitting capabilities and to prevent overfitting, 20% of the 
data is randomly selected as a validation set during the 
network training phase. This training/validation split is 
consistently maintained throughout all stages to avoid 
data leakage. The network parameters are updated using 
the Adam [21] optimization algorithm, known for its 
efficiency in achieving rapid convergence. The learning 
rate is set at 1 × 10−3, and the weight decay is configured 
at 1 × 10−7. Each training epoch utilizes the entire training 
set as input, adopting a full batch size approach. The 
networks undergo training for a total of 10,000 epochs. 

3. RESULTS 

3.1 Dominating dimensionless number and correlation 

Based on the algorithm described in Section 2.1, a 
set of dimensionless representations and the 
eigenvalues representing the influence of different 
dimensionless numbers were obtained, as shown in Fig. 
2. It can be observed that the first eigenvalue is 
significantly larger than the subsequent values, 
indicating that the dependent variable Bochf can be well 
represented by a single dominant dimensionless 
number. The dominant first dimensionless number is as 

follows (with exponents retained to three decimal 
places): 

 
0.138 0.105 0.397 0.460 0.008

g

0.072 0.121 0.075 0.265 0.014 0.561 0.382 0.211

h h f b f fg f

d h g

d L h G

 


   


=


 (8) 

 
Fig 2 Eigenvalues of discovered dimensionless numbers 

The data for three different fluids under Earth's 
gravity and microgravity conditions are plotted in Fig. 3 
and Fig. 4. The variable π and Bochf exhibit a strong 
approximate power law correlation. This relationship can 
be approximated by Eq. (9), effectively providing a 
simplified dimensionless predictive relationship. 

 ( ) ( )10 chf 10log 3.20 log 0.56Bo =  −  (9) 

 
Fig 3 Correlation between log10(π) and the Bochf 

 
Fig 4 Power law relationship between π and the Bochf 

3.2 Decomposition based on standard dimensionless 
numbers 

Although the data-driven approach identified a 
dominant dimensionless number as shown in Eq. (8), its 
physical meaning remains unclear. Therefore, this 
section uses a set of easily interpretable standard 
dimensionless numbers to decompose the obtained π. 
The selected dimensionless numbers are listed in Table 
2. The criteria for selecting this set of dimensionless 
numbers include: (1) The 10 dimensionless numbers are 
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mutually exclusive; none can be expressed as a 
combination of the others. Non-compliance with this 
principle would not yield a definitive solution when 
decomposing dimensionless numbers, but merely an 
approximate least squares solution. To adhere to this 
requirement, after the inclusion of common 
dimensionless numbers, unique ones like KR, 
independent of other numbers, were also devised. (2) 
The power exponents of these numbers are integers, and 
their exponent vectors are as simplified as possible. 

Table 2 Selected standard dimensionless numbers 
Dimensionless 
number 

Function 

Geometric  
length ratio 

h h
d,

L d
LR LR

d d
= =  

Density ratio 
g

gf df

f f

,DR DR
 

 


= =  

Weber number 2

f

G d
We


=  

Reynolds 
number 

f

Gd
Re


=  

Prandtl number 
f

f f

Pr


 
=  

Equivalent inlet 
quality in

fg

1
h

x
h


− =  

Bond number 2g d
Bd






=

 

Kinetic energy 
ratio number 

2

2

f fg

G
KR

h
=

 

Based on the aforementioned dimensionless 
numbers with clear physical meanings, the following 
result is obtained: 

 ( )
0.400.12 0.07 0.10 0.40 0.38 0.01 0.16

h gf

0.27 0.47

df

1LR LR DR Re Pr x Bd KR

DR We


−
=

 (10) 

Combining Eq. (9) and Eq. (10), Bochf is approximately 
proportional to Bd0.032. Therefore, as the gravitational 
acceleration g decreases, the boiling number Bo also 
decreases, indicating that the CHF value decreases, 
which is consistent with existing experimental 
observations. Additionally, the Weber number We, 
representing two-phase instability, is negatively 
correlated with Bochf, aligning with previous fundamental 
studies. The inlet thermodynamic quality (x) is negatively 
correlated with Bo, indicating that a higher degree of 
subcooling at the inlet results in a lower Bochf. 

3.3 Comparison with existing correlations 

The simplified relationship derived from the data-
driven dimensional analysis is given by Eq. (11). Its 
applicability is limited to a conservatively defined range 
of validated dimensionless numbers. This predictive 

model is used for comparative study against the three 
best correlation relationships for CHF under varying 
gravity conditions proposed by Madawar et al. These 
relationships are listed in Table 3, with equations 
referenced therein. The specific metrics used for 
evaluation are the Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), and the coefficient of 
determination (R2), calculated over a total of 1597 data 
points, including both Earth's gravity and microgravity 
data. The formulas for these metrics are given in Eq. (12). 
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Table 3 Prediction results of compared correlations 
Source 
(year) 

MAE MAPE R2 

Tso et al. 
[22] (2000) 

0.105 > 100% < 0 

Tibiriçá et al. 
[23] (2012) 

0.0019 38.35% 0.33 

Darges et al. 
[24] (2022) 

0.00099 26.05% 0.82 

Present 
work 

0.00028 17.61% 0.91 

According to Table 3, the present relationship yields 
more accurate predictions on a dataset comprising water 
and FC-72 under both microgravity and Earth's gravity 
conditions compared to previous works. This 
demonstrates that the dimensionless number π derived 
from the data-driven algorithm has strong 
representation capabilities for CHF under varying gravity 
conditions. 

4. RESULTS 
The present work introduces a data-driven 

dimensional analysis method based on neural networks 
and Buckingham's theorem, applied to predict CHF in 
vertical tube flow boiling under varying gravity 
conditions. The following key findings were obtained: 

(1) A new dimensionless number π was identified, 
which has a strong influence on the boiling number Bochf. 
This dimensionless number exhibits a positive 
exponential scaling relationship with Bochf. 



6 

(2) The dimensionless number π was decomposed 
using a series of standard dimensionless numbers to 
make the expression interpretable. 

(3) Based on the newly identified dimensionless 
number, a simplified predictive relationship was 
constructed. Comparison results show that the 
prediction accuracy of the new model surpasses that of 
previous correlation relationships, indicating that the 
feature quantities discovered through data-driven 
methods can effectively describe CHF in vertical tube 
flow boiling under varying gravity conditions. 

The obtained correlation can be applied to predict 
flow boiling CHF under varying gravity conditions, such 
as microgravity in space, lunar gravity, and Martian 
gravity, holding potential value for energy management 
in deep space exploration. 
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