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ABSTRACT

This paper seeks to identify the uncertainty factors in
the hydrogen supply chain that affect supply chain costs
through a systematic review of the existing literature
from 2019 to 2023. 45 uncertainty factors are identified,
which can be divided into two categories based on their
impact scope. The factors in the first group impact the
whole hydrogen supply chain, while the parameters in
the second group affect one or several specific sectors in
the supply chain. Hydrogen demands, electricity prices,
and the capital expenditure of the electrolyzer are the
most considered uncertainty factors in the existing
literature. Additionally, it turns out that the current
research on hydrogen supply chain uncertainty mainly
focuses on the factors that affect the whole supply chain
and the sector production, while the sectors of storage
and transportation have received less attention in the
current research.
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1. INTRODUCTION

The implementation and integration of hydrogen
into the current energy system are being investigated to
address climate change concerns, thereby enabling the
decarbonization targets of various countries [1]. To do
so, optimal design and construction of cost-effective and
stable hydrogen supply chains, encompassing
production, conditioning, storage, transport,
transloading (terminal), reconditioning, and
consumption play a significant role. As the hydrogen
economy is still emerging, there are plenty of uncertain
sources associated with the supply chain that affect the
hydrogen supply chain costs and have to be considered
during the decision-making process by the political
makers, investors, designers, and planners.

The term “supply chain uncertainty” refers to the
uncertainties (including the risks) that can occur at any

point within the supply chain. These are often caused by
a lack of information or understanding about the supply
chain, its environment, or processing capacities [2]. The
issues of uncertainty can have positive or negative
impacts on the supply chain [3]. For example, the
investment costs of electrolyzer or liquefaction facilities
for liquefied hydrogen may decrease due to future
technological development, thereby benefiting the
hydrogen supply chain with lower costs and accelerating
the industrialization of the hydrogen economy.
According to Simangunsong et al. [3], the general supply
chain uncertainty sources can be divided into three
groups:

1) the uncertainty sources that come from the
specific supply chain sectors (section-specific). This
group encompasses product characteristics (for
example, product life cycle and specification),
manufacturing process, control/chaos/response
uncertainty, decision complexity,
organization/behavioral issues, and information system
or IT complexity;

2) the uncertainty sources that arise from some of
the hydrogen supply chain sectors (internal supply chain)
and. For this group, sources such as customer demand,
supplier, order forecast horizon and chain configuration,
infrastructure, and facilities are relevant;

3) external uncertainty factors from outside the
hydrogen supply chain. These include environmental
factors such as government policy, competitor behavior,
macroeconomic changes, and disasters.

Hydrogen supply chains have been studied for many
years; therefore, it is necessary to summarize the
uncertainties within them. To the best of our knowledge,
there is still a significant gap in the research. Therefore,
we conducted a systematic literature review to provide
transparency regarding the current state-of-the-art and
to identify scientific gaps in the research on hydrogen
supply chain uncertainty sources.
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2. MATERIAL AND METHODS

In this section, we introduce the methodology of the
systematic literature review utilized for this paper.

The literature review is conducted by using the
guideline from Kraus et al. [4]. To cover a holistic
references paper, the keywords “hydrogen” AND
“Supply Chain” AND “logistic” OR “distribution” OR
“transport” OR “distribution” in the topic were searched
from the database Web of Science and Scopus. A specific
set of inclusion and exclusion criteria are developed and
utilized to collect the relevant papers. We only consider
peer-reviewed articles published between 2019 and
2023 in journals ranking SIR Q1 and Q2 in the research
fields “energy,” “chemical engineering, “and “Business,
Management, and Accounting” to ensure the quality of
the database. Furthermore, only papers written in
English are considered because of the issue of
understanding. Lastly, the relevant papers should focus
on 1) the hydrogen supply chain, including hydrogen
production, storage, and transport; 2) the uncertainty
sources in the supply chain. As a result, 68 papers were
identified as the ultimate sample for the review. After
the comprehensive review of the sample, 48 papers were
then reviewed thoroughly with the target uncertainty
factors.

3. RESULTS AND DISCUSSION

In this section, we present the hydrogen supply chain
uncertainty factors identified in the referenced
literature. We categorize these factors into distinct
uncertainty groups based on their scope of impact,
highlighting the analysis within various supply chain
sectors and the evaluation of the tools employed to
address hydrogen supply chain uncertainties.

Through a comprehensive analysis, 45 uncertainty
factors for the hydrogen supply chain were identified in
the referenced papers. These factors were categorized
based on their impact in two groups. The uncertainty
factors in Group 1 affect supply chain decisions within
the internal section only, while the factors in Group 2 can
influence decisions throughout the entire hydrogen
supply chain, including the parameters arising from the
internal supply chain and the environment.

Four factors of the 45 identified uncertainty sources
are observed to influence the entire supply chain.
Hydrogen demand, originating from the internal supply
chain, is considered the most uncertain factor in the
sample. The hydrogen supply chain should meet end-
user demands efficiently and cost-effectively. In
designing, planning, and optimizing the hydrogen supply

chain, hydrogen demand is one of the most significant
parameters. However, as the hydrogen market is still
emerging, accurately forecasting future hydrogen
demand is challenging. Therefore, hydrogen demand
uncertainty has been addressed in many studies to
improve the accuracy of the hydrogen supply chain
design and assessment, ensuring the capacity of
hydrogen facilities and supply within a cost-effective
network. Additionally, factors such as carbon pricing and
the version for CO, emission, which are influenced by
government policies, are often considered uncertainty
sources for the hydrogen supply chain, particularly for
clean or green hydrogen. Since hydrogen is considered
one of the most promising energy carriers for achieving
decarbonization targets, it is vital to evaluate the impact
of CO, on the design and construction of hydrogen
supply chain networks to ensure these goals are met. In
some cases, carbon prices play a decisive role in
determining whether the hydrogen supply chain is cost-
effective, particularly for truck transport pathways [5].
This is because transportation trucks are still expected to
use traditional fuels, resulting in high CO; emissions
during their operations. Therefore, it is significant to
assess the uncertainty in CO; aspects, including emission
targets and prices.

The final uncertainty sources identified impacting
the entire supply chain (group 1) are the capital recovery
factors, such as the weighted average cost of Capital
(WACC) and discount rate. Hydrogen projects are
generally expected to be constructed over several
decades. The WACC that leverages the required cost on
the net present value can impact hydrogen costs
significantly, particularly for infrastructure with high
investment costs, such as production and conversion
plants, underground storage facilities, and hydrogen
pipelines. Consequently, it is important to evaluate the
financial recovery factors for hydrogen supply chain
infrastructures, as they may affect investment decisions
made by supply chain stakeholders, including
governments and investors. Table 1 lists the identified
uncertainty factors in the sample, including their
descriptions, corresponding groups, impact scopes, and
main sources. In the sample, the tool scenario analysis is
primarily used to address the uncertainty factors in
group 1 since this tool can effectively deal with
uncertainties arising from unexpected changes in the
external environment [6]. Because of the unpredictable
characteristics of the hydrogen economy and the
challenges of precision long-term future forecasts at the
time decisions are made, this tool suits the effective
planning and design of the hydrogen supply chain. In



General, several scenarios are defined to evaluate the
uncertainty factors, in which each scenario depicts one
possible future state. For instance, the hydrogen
demands are assumed to be 0, 25%, 50%, 75%, and 100%
penetration rates of FCEVs in many cases in the
reference papers [7—10], while the scenarios for financial
discovery factors range from 0 to 10% [8,11,12]. Each
scenario in this analysis depicts one possible future state.
The scenarios together highlight the importance and
potential consequence of the accessed uncertainty
factors.

Forty-one identified factors impact specific supply
chain sectors. The uncertainty sources in the hydrogen
production section have received the most attention in
the reference papers, with 13 factors mentioned 43
times. Following hydrogen demand, the electricity price
for electrolysis and electrolyzers' capital expenditure
(CapEx) are the most considered uncertainty factors. The
electricity price for electrolysis can significantly impact
the dynamics of hydrogen production, storage, and
transmission systems. During off-peak electricity price
periods, hydrogen production plans may increase their
production volume. When hydrogen demand is low, this
increases the volume of hydrogen stored and
transported within the supply chain, which can be
utilized during periods of low renewable resource
availability. Consequently, the electricity price can
noticeably affect investment decisions regarding
hydrogen infrastructure, especially the production assets
for electrolysis. Since the electrolyzer technology is still
not commercially or technologically mature, the CapEx of
electrolyzers is expected to decrease through more
mature series production concepts, while efficiency may
increase via technological optimization. These
considerations necessitate including these two factors as
uncertainties when evaluating hydrogen production
costs.

For the conversion and reconversion section, the
primary focus of uncertainty evaluation is on the CapEx
of the conversion and reconversion equipment, such as
de-/hydrogenation and liquefaction, conversion
efficiency, and the raw materials for Liquid Organic
Hydrogen Carriers (LOHC). Similar to the production
section, the technologies for conversion and
reconversion are not yet technologically or commercially
mature. As a result, the CapEx of the equipment and its
efficiency are expected to remain unstable. Additionally,
the raw material costs for LOHC are considered a high
uncertainty source for the LOHC hydrogen supply chain,
as this section is still developing [11].

In the transportation sector, transportation distance
is the most studied uncertainty factor, as it may
significantly impact the hydrogen transportation
network and its associated costs. Other factors evaluated
in the reference papers include fuel price, operational
expenditure of trailers, and trailer capacity, primarily
concerning the truck transport system. However, other
modes of transport, such as pipelines and ships, are not
evaluated.

Notably, the hydrogen storage section has received
little attention, with only the storage cycle length, CapEx
of salt caverns, and the boil-off rate of liquefied
hydrogen being researched once each. Given that large-
scale hydrogen transportation and storage are critical
challenges in the hydrogen supply chain, more research
in these areas from a holistic perspective is necessary to
enable effective planning and construction of the
hydrogen supply chain [13].

The uncertainty factors impacting specific supply
chain sectors are primarily addressed using sensitivity
analysis. This method is mainly used to identify critical
uncertainty factors and risk sources or to prioritize
additional data collection in real situations or
mathematical models with more parameters [14]. In the
reference papers, sensitivity analysis is primarily used in
hydrogen supply chain design studies involving
operations research mathematical models. These studies
evaluate factors such as the CapEx of equipment for
hydrogen production, conversion, and storage, energy
prices, and transportation distances. Through this
approach, key uncertainty factors in the hydrogen supply
chain, such as energy (electricity) prices, carbon prices,
and equipment CapEx, are identified.

4. CONCLUSIONS AND NEXT STEPS

We conducted a systematic literature review to
identify the uncertainty factors considered in research
from 2019 to 2023. As a result, 45 uncertainty sources
were identified in the sample. Among these, hydrogen
demand, which belongs to the environmental aspect, is
highlighted as the most studied uncertainty factor, given
its critical role in hydrogen deployment. For hydrogen
sector-specific uncertainty sources, the investment cost
and efficiency of hydrogen equipment and facilities are
the main uncertainty sources considered in the
referenced literature. This is because the hydrogen
market and technology are expected to develop rapidly
in terms of technology, production process, production
efficiency, and the corresponding supply chain.
Additionally, material prices and availability (e.g.,
biomass, natural gas, water, and LOHC) are other



hydrogen demand mainly studied in the samples, which

come from the production sector.

identified uncertainty sources. The electricity price for

electrolysis and the CapEx of electrolyzers are following

Table 1: Summary of identified uncertainty factors
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Several research gaps have been identified from the
sample. The uncertainty factors are mainly focused on
the entire hydrogen supply chain or the production
sector. Storage, transportation, and seaway terminals
have received less attention in current research. This gap
should be addressed in future research, as efficient and
cost-effective  storage, transport, and terminal
operations are expected to be key success factors for
hydrogen deployment. Furthermore, the identified
uncertainty sources primarily include equipment
specifications, life cycles, or hydrogen demand. Other
potential uncertainty factors, such as the availability of
facilities, organizational or behavioral issues, and
external parameters like political changes, incentives, or
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