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ABSTRACT 
 Fault diagnosis of partial discharge (PD) is crucial for 
the protection of overhead lines with covered 
conductors. Facing the challenge of identifying PDs that 
may have diverse fault patterns from background noise 
interferences, a novel intelligent fault diagnosis utilizing 
the large language model (LLM) is developed. To 
effectively apply LLM to PD diagnosis, the domain 
knowledge-based prompts are designed by 
incorporating the specific domain information, PD 
detection task description, and measurement data 
information. To further improve the capability of LLM 
reasoning antenna signals, a signal reprogramming 
method is adopted to align the modalities of the 
measured signals and natural language. Finally, an 
output projection is constructed to identify PD by taking 
in the features learned from the LLM, whose backbone 
model remains intact during the learning process. 
Experimental results validate the efficiency and 
effectiveness of the developed method. 
 
Keywords: intelligent fault diagnostics, large language 
model, partial discharges, power line protection. 

1. INTRODUCTION 

Fault diagnosis of power lines plays a critical role in 
improving the reliability of power distribution systems 
[1]. Faults caused by contact of covered conductors (CCs) 
with tree branches or CC falling onto the ground often 
result in insulation deterioration of CC [2], [3]. A key 
indicator for insulation deterioration of CC is the partial 
discharge (PD) activity [4]. PDs are small electric sparks 
or discharges caused by an electric field enhancement 
[5]. Unlike the signals collected in the laboratory, the raw 
signals from real overhead lines include uncertain 
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information caused by external background noise 
interference. One of the major challenges for PD pattern 
recognition is to extract PD signals from a large number 
of background noises [6]. 

Machine learning methods, such as random forest 
[6], and light gradient boosting machine (lightGBM) [7], 
have been used for detecting PD signals. To identify fault 
peaks in fault PD patterns, fault indicators are designed, 
and the corresponding statistical features are calculated. 
With the customized features, machine learning 
methods are used as classifiers to recognize PD patterns. 
To characterize PD-related pulse shapes, the clustering 
approach is used as a feature extractor; then, lightGBM 
is implemented as a classifier for CC fault detection [7]. 
Considering that manual feature preparation is time-
consuming, intelligent fault diagnostics based on deep 
learning methods have been developed [8]-[10]. An 
ensemble deep learning framework combining base 
learners and a meta-learner is proposed to automatically 
learn features from antenna signals and classify PD 
signals[11].  

Although DL methods provide promising solutions to 
learn and recognize fault patterns from raw signals, they 
require a high level of knowledge of both the DL 
algorithms and the application industry. In addition, the 
application of DL models to various fault diagnosis tasks 
necessitates the training of numerous models, which is 
time-consuming and laborious. Therefore, intelligent 
fault diagnosis utilizing a simple training and application 
strategy can enhance user-friendliness and mitigate the 
challenges associated with implementing DLs in practical 
applications.  

Large language models (LLMs) are powerful tools 
with robust pattern recognition and reasoning abilities. 
Prompt-based learning, which uses frozen LLMs to tune 
trainable prompt embeddings, provides an efficient 
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solution to employ LLMs in different downstream tasks 
[12]. Therefore, the intelligent fault diagnosis utilizing 
prompt-based learning with LLMs necessitates only the 
fine-tuning of embedding layers and output projection 
layers, offering a streamlined approach for implementing 
LLMs across diverse fault diagnosis scenarios. 

 In addition to the implementation of LLMs in 
computer vision and natural language processing, the 
capabilities of LLMs in the electric energy sector[13], 
such as load forecasts and power flow data analysis, have 
been explored. By leveraging the natural language 
understanding ability and knowledge reasoning ability of 
LLM, an LLM-based fault identification and 
troubleshooting solution is developed [14]. The superior 
pattern recognition and reasoning capability make LLMs 
promising solutions for intelligent Fault diagnosis. 
However, the inherent difference between 
measurements (e.g., antenna signals) and natural 
language poses significant challenges for LLMs in directly 
identifying fault patterns from measurements, 
ultimately hindering their practical industry application. 

To address the above challenge, a novel LLM-based 
intelligent fault diagnosis for overhead lines with CCs is 
developed. Domain knowledge-based prompts, which 
consist of distinct domain characteristics, specific 
learning tasks, and enriched data information, are 
designed to be used as a main part of inputs. The 
measured signals are reprogrammed and used as 
another part of inputs. This method predicts faulted 
signals by using the frozen LLM and tuning the trainable 
parameters in signal reprogramming layers and output 
projection layers. The contributions of this paper are as 
follows. 
1. Compared to the development of DL-based fault 

detection methods requiring a high level of 
knowledge of both the DL algorithms and the 
application industry, a novel intelligent fault 
diagnosis adopting a simple application strategy, 
which uses frozen LLM to tune a small number of 
trainable parameters, is developed. By exploring the 
PD detection performance of LLM, this study shows 
the potential of employing LLMs in addressing 
complex industry application challenges. 

2. Facing the inherent difference between 
measurements (e.g., antenna signals) and natural 
language, which would degrade the performance of 
LLM reasoning measured signals, a signal 
reprogramming method is adopted to align the 
modalities of the measured signals and natural 
language. In addition, domain knowledge-based 

prompts are designed as a task-specific activation of 
the LLM to enhance the inference capability of LLM. 

2. FAULT DIAGNOSIS FOR OVERHEAD LINES WITH 
COVERED CONDUCTORS 

2.1 CC fault diagnosis problem 

CC line contacts with surrounding vegetation would 
cause faults, such as phase-to-ground and phase-to-
phase faults [2]. These faults are accompanied by PD 
activities caused by inhomogeneous electrical fields. The 
occurrence of PD activities would cause the degradation 
of CC, leading to catastrophic results, e.g., power supply 
cuts and forest fires. Therefore, PD diagnosis plays a 
critical role in securing the power distribution systems. 

To detect PD activities for CC fault diagnosis and 
monitor the condition of CC insulation systems, a 
contactless antenna method is used [15]. Unlike the data 
from the laboratory, the data collected from different 
stations in the real environment are very noisy. Examples 
of antenna signals collected using the contactless 
antenna method are shown in Fig.1. By observing the 
non-PD signals collected from stations 52009 (Fig.1 (b)) 
and 52010 (Fig.1 (d)), it can be found that the magnitudes 
of signals from different stations are different.  

 
(a) Example of signals (PD), station ID: 52009 

 
(b) Example of signals (non-PD), station ID: 52009 

 
(c) Example of signals (PD), station ID: 52010 
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(d) Example of signals (non-PD), station ID: 52010 

Fig. 1 Examples of signals from contactless sensors. 

Furthermore, it can be observed that the signals 
contain high levels of noise, including random pulse 
interference (RPI) and discrete spectral interference 
(DSI)[16]. 

DSIs are the narrowband noise spectrums that 
primarily originate from wireless communication 
systems, including communication and radio systems. 
When the DSIs occur, PD signals are modulated on DSI 
signals, decreasing the ratio of the PD pattern. 
Additionally, the amplitudes of DSIs fluctuate in response 
to external factors, such as weather conditions. A high 
level of DSI noise can cover the PD pattern and 
complicate the classification task. 

RPI noises are caused by any CC non-relative pulse 
appearance in the examined signal. There are various 
sources of this interference including lightning strikes 
and switching operations. Distinguishing between the 
signal patterns of non-PD signals and actual PD signals 
proves challenging due to the resemblance in pulse 
frequency characteristics of false hit peaks generated by 
RPI and PD signals, often leading to misinterpretation.  

In addition to noise interference, the diversity of PD 
patterns, see Fig. 1 (a) and (c), makes the fault diagnosis 
a more challenging problem. The PD-pattern is the time 
pattern of the PD activity, influenced by a range of 
external factors like the shape and length of tree 
branches, the number of contact points between tree 
branches and CC, and changing environmental 
conditions like temperature, among others. 
Consequently, the complexity of establishing the 
correlation between raw data and partial discharge 
presents a significant challenge in developing an 
intelligent fault diagnosis. 

2.2 Overview of the proposed intelligent fault diagnosis 

The learning problem of the LLM-based fault 
diagnosis using LLM can be expressed as  

𝑦 = 𝐿𝐿𝑀(𝒙),         (1) 
where 𝐿𝐿𝑀  indicates the pre-trained model, such as 
generative pre-trained transformer (GPT), GPT2, and 
bidirectional encoder representation from transformers 
(BERT). 𝒙  indicates the signals and 𝑦  is the binary 
detection results. If the fault is detected, 𝑦 = 1 . 
Otherwise, 𝑦 = 0. 

However, due to the lack of specific domain 
knowledge associated with PD detection in CC lines, the 
detection performance of LLM may not be satisfactory. 
Therefore, the domain knowledge 𝒌 is extracted to be 

input to the LLM. The developed LLM-based intelligent 
fault diagnosis framework for CC lines is illustrated in Fig. 
2.  

 
Fig. 2 The overall framework of intelligent fault diagnosis 
using LLM 

Data is first collected from the real environment 
using the antenna contactless method. The domain 
knowledge 𝒌, including background associated with PD 
detection in CC lines and data information, is extracted 
and constructed as prompts 𝒑 . The pre-trained LLM 
embedder is used to embed the prompts 𝒑 . In the 
meanwhile, the collected raw signals 𝒙  are 
preprocessed to remove noise and extract statistical 
features 𝒙𝒔 . The signals reprogramming is adopted to 
process the extracted features 𝒙𝒔. The frozen LLM takes 
the embedded prompts 𝑬𝒑 and features 𝑬𝒙𝒔  as inputs 
and outputs the hidden representations to the output 
projection, which generates the final detection results 
𝒚. 

Therefore, the learning problem of the developed 
intelligent fault diagnosis using LLM is described as  

𝑦 = 𝐿𝐿𝑀$(𝒌, 𝒙),        (2) 
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where 𝜃 indicates the trainable parameters in signal 
reprogramming and output projection layers. 

3. PROPOSED METHODOLOGY 

3.1 Domain knowledge-based prompt embedding 

Prompting functions as an effective task-oriented 
activation of LLMs [17]. Prompt-as-Prefix can enrich the 
input context and enhance the LLM’s adaptability to 
downstream tasks. Therefore, the domain knowledge of 
measurement and expert-knowledge-based PD 
detection results are used for constructing prompts. 

Fig. 2 gives an example of prompts, which consists of 
three components: domain information, task 
description, and data information. Domain information 
provides LLMs with background relevant to PD detection. 
Task description provides the LLM with task instructions, 
e.g., fault detection given antenna signals. Since antenna 
signals from different stations are different, the station 
ID is used as one of the data information to enrich the 
input information. In this way, the prompts incorporated 
with distinct domain characteristics, specific learning 
tasks, and enriched data information, are designed to 
enhance the fault pattern recognition capabilities of 
LLMs. 

Then, the embedder of the pre-trained LLM is used 
to embed the prompts 𝒑.  

     𝑬𝒑 = 𝐸𝑚𝑏𝑒𝑑%%&(𝒑)        (3) 

where 𝐸𝑚𝑏𝑒𝑑%%& indicates the process of tokenization 
and token embedding of the LLM. For different LLMs, 
e.g., GPT2 and BERT, the 𝐸𝑚𝑏𝑒𝑑%%& can be different. 

3.2 Raw signals processing and reprogramming 

3.2.1 Statistical feature extraction 

Since the antenna signals contain a high amount of 
background noises, a denoising procedure using 
univariate wavelet denoising (mother wavelet: db4, level 
of decomposition: 1) and hard thresholding is applied to 
suppress the noises. The signal is decomposed into first 
level of detail and approximation coefficients. Then, the 
hard thresholding is performed on the detailed 
coefficients ( 𝑐' ) to remove noises. The threshold is 
calculated as: 
                𝜆 = &()(|,"|)

..012345678	(:)
	,    (4) 

where N is the number of samples, 𝑀𝐴𝐷 refers to the 
mean absolute deviation. The coefficient values greater 
than 𝜆 will be retained; otherwise, the co-efficient 
values will be set to 0. 

The denoised signals are divided into 160 windows 
with 5000 samples each. In each window, 10 statistical 

features are extracted, including the mean values, 
standard deviation, percentile values, and a percentile 
rank of mean. When calculating the percentile values, 
the 𝑖;<, (𝑖	 = 	0,1,25,50,75,99,100) percentile values of 
the signals are considered as the features. For example, 
when 𝑖 = 0, the minimum value of the signal will be 
extracted as a feature. Therefore, statistical features 𝒙𝒔 
(i.e., a matrix of 160×10) will be extracted from each 
signal and used as inputs of the PITCN. These features 
represent statistical information of antenna signals. 

3.2.2 Signals embedding 

To align the modalities of antenna signals and 
natural language, the antenna signals are reprogrammed 
into text prototype representations, thereby enhancing 
their compatibility with the linguistic capabilities of 
language models. 

A multi-head cross-attention layer is adopted to 
reprogram statistical features 𝒙𝒔. 

𝑬𝒙𝒔 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 E𝑸𝒌
𝒊 𝑲𝒌

𝒊 ⊺

4'&
F𝑽𝒌𝒊         (5) 

where 𝑸𝒌𝒊 = 𝒙𝒔𝒘𝒌
𝑸  is query matrices, 𝑲𝒌

𝒊 = 𝑬𝒘𝒌
𝑲  is 

key matrices, and 𝑽𝒌𝒊 = 𝑬𝒘𝒌
𝑽  is value matrices. 𝑬 

denotes the pre-trained word embedding, 𝒘𝒌
𝑸 , 𝒘𝒌

𝑲, 
and 𝒘𝒌

𝑽 are trainable parameters. 𝑑B is the dimension 
of the head. 

3.3 LLM processing 

After concatenating the embedded prompts and 
statistical features, i.e., 𝑬𝒊𝒏 = [𝑬𝒑; 𝑬𝒙𝒔], the pre-trained 
LLM is used to output the learned representations. 

𝒙𝑳𝑳𝑴 = 𝐿𝐿𝑀(𝑬𝒊𝒏)      (6) 

In this paper, the pre-trained BERT is utilized. The 
model architecture of BERT is a multi-layer bidirectional 
transformer encoder [18]. To be more specific, the 
BERTBASE with 12 transformer blocks, and 12 self-
attention heads is used. Its hidden size is 768 and the 
total parameters are 110M. Note that the embedder and 
body of LLM are frozen during the fine-tuning. 

3.4 Output generation 

Finally, the learned representations 𝒙𝑳𝑳𝑴  are 
flattened and sent to an output projection, which 
consists of four fully connected layers. 

𝒙𝒍 = 𝜎O𝒘𝒍𝒙𝒍G𝟏 + 𝒃𝒍	R, 𝑙 = 1,… , 𝐿 − 1        (7) 

𝒀𝒐𝒖𝒕 = 𝒘𝑳𝒙𝑳G𝟏 + 𝒃𝑳	         (8) 

where 𝒘𝒍  and 𝒃𝒍  are trainable parameters of 𝑙;< 
layer. 𝜎 is the non-linear activation function, i.e., ReLU. 
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4. CASE STUDIES 

4.1 Data description 

The signals collected via a contactless antenna 
method in CC medium-voltage overhead power 
transmission lines are used for validation [15]. The 
examples of raw signals are shown in Fig.1. The total 
1700 data (180 series containing PD signals and 1520 
series without PDs) are used for training and testing. 
Each series consisted of 800,000 observations. The 
magnitude of signals is in the range from −128 to 127. 
70% of the data is used for training and the rest is used 
for testing. 

4.2 Model performance comparison 

To validate the PD detection efficiency of the 
developed LLM-based method, the dataset is used for 
testing model performance of the expert-knowledge-
based PD detection[16], XGBoost [19], ensemble deep 
learning [11], and the developed method. The confusion 
matrices are shown in Fig. 4.  

 
Fig. 4 Confusion matrices using different methods. (a) 
Expert-knowledge-based PD detection. (b) XGBoost. (c) 
Ensemble DL. (d) Proposed LLM-based method 

In the confusion matrices, class 1 (positive) indicates 
fault, and class 0 (negative) indicates normal signals. The 
test dataset consists of 44 faulted samples and 466 
normal samples. To evaluate PD detection performance 
on the imbalanced dataset, the Matthews correlation 
coefficient (MCC) is used as the main evaluation metric: 

𝑀𝐶𝐶 = (LM×L:GOM×O:)
4(LMPOM)(LMPO:)(L:POM)(L:PO:)

	   (9) 

where TP is the number of true positives, TN is the 
number of true negatives, FP is the number of false 
positives, and FN is the number of false negatives. TP, TN, 
FP, and FN can be obtained by calculating the confusion 
matrix. To give a more comprehensive comparison of 
detection performance, other metrics, such as precision, 
recall, F1 score, and accuracy are given in TABLE I. 

TABLE I Detection performance comparison among 
different methods 

Methods Precision Recall F1 MCC Accuracy 
expert-knowledge-

based PD 
detection 

0.29 0.39 0.33 0.26 0.87 

XGBoost 0.55 0.14 0.22 0.24 0.92 
ensemble DL 0.41 0.55 0.90 0.41 0.89 
LLM-based 

method  0.72 0.48 0.58 0.56 0.94 

By comparing confusion matrices and metrics of 
different methods, it can be observed that the DL-based 
methods, i.e., ensemble DL and LLM-based method 
outperforms the other two methods. This demonstrates 
the efficiency of DL methods in learning and recognizing 
fault patterns. The ensemble DL achieves the highest 
recall and F1 score among the four methods. This 
indicates that the ensemble DL is more sensitive to 
positive data compared to the other methods. The 
developed LLM-based method has the highest precision, 
MCC, and accuracy. Since MCC takes into account all four 
values in the confusion matrix, the highest MCC indicates 
that the developed LLM-based method is able to predict 
both classes well.  

5. LIMITATIONS AND FUTURE DIRECTIONS 
The developed LLM-based method shows potential 

for enhancing the efficiency and effectiveness of fault 
diagnosis. Nevertheless, there are inherent limitations 
that require attention, as well as opportunities for 
further development and improvement. 

One of the significant challenges in applying LLMs 
within fault diagnosis is the lack of domain-specific data 
in the pretraining of LLMs. Considering the diverse fault 
characteristics across various applications, it is difficult 
for an LLM that trained on publicly available datasets to 
effectively learn distinct fault patterns and solve task-
specific fault diagnosis problems. In addition, the lack of 
interpretability poses challenges for operators in 
comprehending the predictions generated by LLMs. 

(a) (b) 

(c) (d) 
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Furthermore, the poor quality of real-environment data, 
such as data missing and noises, can significantly impair 
the inference capabilities of LLMs. 

Therefore, future research should prioritize prompt 
engineering techniques to incorporate domain-specific 
knowledge into LLMs, thereby enhancing their pattern 
recognition and reasoning capabilities for addressing 
diverse fault diagnosis problems. Explainability 
techniques should be explored to improve the 
interpretability of LLMs. To deal with real-world data 
problems, data augmentation techniques should be 
studied to generate high-quality data for fine-tuning 
LLMs to improve the detection performance of LLM-
based fault diagnosis. 

6. CONCLUSIONS 
In the face of the problem of detecting diverse PD 

patterns from noise interferences, a novel intelligent 
fault diagnosis using LLM is developed. The domain 
knowledge associated with PD diagnosis for overhead 
lines with CC and the collected raw signals are processed 
and embedded as the inputs of LLM. The developed 
method adopts a simple training strategy, which uses 
frozen LLM to tune a small number of trainable 
parameters in signal reprogramming layers and output 
projection layers.  

The experimental results show that the LLM is a 
promising tool for recognizing diverse PD fault patterns. 
The highest MCC achieved by the developed LLM-based 
method proves that the pre-trained language model can 
be effectively applied to solve industry problems by 
employing a simple implementation strategy. 
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