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ABSTRACT

Large-scale short-term aggregate load forecasting in-

volves predicting energy consumption across geographic

areas or large sets of users. This practice is crucial in

power systems, particularly for energy suppliers. The

widespread installation of smart metering technology has

facilitated the collection of extensive data on user load

profiles. By incorporating such granular data, large-scale

load forecastingbecomesmore accurate and reliable, cap-

turing the variability and trends across consumer seg-

ments. However, transforming smart-meter data into

effective load forecasting models faces significant chal-

lenges. For instance, smart-meter data presents issues

related to its high volume, variety, and fine-grained tem-

poral resolution. Consequently, different techniques can

be considered to mitigate these issues before applying

forecasting models to the data. This paper conducts a

two-step literature review to provide insight into the data,

forecasting approaches, and model evaluation used in

large-scale, short-term aggregate load forecasting from

smart-meter data. We propose classifying the different

forecasting approaches into integrated, residential-based,

and cluster-based strategies. We additionally draw insight

into the effect of data volume on forecasting models, per-

formance comparison between forecasting approaches,

and the tendency ofmodel complexity in this research do-

main.

Keywords: load forecasting, big data, artificial intelli-

gence, large-scale, large volume, energy supplier, smart

grid.

NOMENCLATURE

Abbreviations

AT Attention Mechanism

CER Commission for Energy Regulation

DL Deep Learning

DTW Dynamic Time Wrapping

GNN Graph Neural Network

GPU Graphical Processing Unit

ENTSO-E European Network of Transmission

System Operators for Electricity

LP Load Profile

LR Linear Regression

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

K-NN K-Nearest Neighbors

MLP Multi-Layer Perceptron

NRMSE Normalized Root Mean Square Error

NYISO New York Independent System Oper-

ator

PCA Principal Component Analysis

RMSE Root Mean Square Error

RNN Recurrent Neural Network

STLF Short-term Load Forecasting

SVM Support Vector Machine

TB Tree-Based

1. INTRODUCTION

In the context of energy transformation, the digitaliza-

tion process facilitates the collection and processing of

vast amounts of data [1]. This advancement enablesmore

accurate consumption predictions and management of

energy systems [2], contributing to smarter, more re-

silient, andmore sustainable energy systems [3, 4]. For in-

stance, the roll-out of smart meters has allowed for more

granular and detailed data [5]. These data can benefit

many energy stakeholders, given that smart meters, lo-

cated at endpoints, can be aggregated in various ways

based on specific criteria or shared characteristics [6]. For

example, meters situated in a particular geographical area

(such as a neighborhood), connected to a certain feeder,

transformer, substation, or the entire distribution system,

or those belonging to a specific energy provider can be

grouped to inform the forecasting system at that level [7].

These new sources of data exhibit characteristics such
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as heterogeneous energy usage patterns and temporal

granularity across large volumes of multiple load profiles.

Consequently, this requires a rethink of data-processing

techniques and model selection to effectively incorpo-

rate these properties into forecasting models. For in-

stance, traditional forecasting approaches often rely on

non-granular data aggregation and do not consider vari-

ability. Meanwhile, new approaches can consider clus-

tering to address, for example, variability in load profiles.

With clustering, user load profiles are grouped by simi-

larity, allowing models to train under a lower variability

scenario, improving overall performance [8].

Although the available literature is extensive and liter-

ature reviews exist, the relationship between large vol-

umes of smart-meter data and the forecasting approaches

on these data is often overlooked. For example, the au-

thors in [9] presented a literature review focused on load

forecasting, avoiding data volume’s impact on develop-

ing a forecasting system. Meanwhile, authors in [10] ex-

amined load forecasting models within the context of big

data analysis. However, they emphasize themodels them-

selves rather than the approaches or workflows of the

forecasting process. Additionally, their focus is more on

multivariate forecasting models that use exogenous vari-

ables, such asweather data, rather than smart-meter data

at the household level. Thus, a potential research gap in

applying short-term aggregate load forecasting to the in-

creasing availability of user data, along with the lack of

a comprehensive review of the existing literature, moti-

vates this study to explore large-scale aggregate load fore-

casting using smart-meter data.

We structure the remainder of this paper as follows: In

Section 2, we introduce our research approach to conduct

our literature review. In Section 3, we present the pri-

mary results on large-scale aggregate load forecasting us-

ing vast data volumes from the perspectives of data, fore-

casting approaches, and model evaluation. Specifically,

we categorize different approaches for forecasting aggre-

gate load based on user-side data. In Section 4, we draw

some insight into these findings. Finally, in Section 5, we

summarize the findings and suggest directions for further

research.

2. LITERATURE REVIEWMETHODOLOGY

We consider the principles outlined by [11], [12],

and [13] to design our two-step literature review process,

illustrated in Fig. 1.

The first step is a scope review [14] that provides the

first insight into load forecasting using a large volume of

data. We identified two research domains from it: load

forecasting from a single system load profile using addi-
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Fig. 1 Two-step literature review process.

tional exogenous variables and load forecasting frommul-

tiple user load profiles. The research object of the former

case is system load profiles, as seen for EuropeanNetwork

of Transmission System Operators for Electricity (ENSTO-

E) [15], New York Independent System Operator (NYISO)

[16], which gives the forecast at the system level. In con-

trast, the latter case focuses on employing and manipu-

lating multiple smart-meter load profiles to make short-

term forecasts at either the residential or aggregate level.

Drawing from this insight and aligning with our research

question, we limited our literature review to aggregate (or

large-scale) forecasting systems using multiple user load

profiles.

The second step is a semi-systematic literature review,

consisting of three different phases: 1) identification, 2)

screening, and 3) eligibility. In the identification phase,

we used the search string ((”large scale” OR ”Big Data”)

AND (”load forecasting”)) between 2010 and 2024 to filter

paper titles in three databases: Google Scholar, Seman-

tic Scholar, and Scopus using Publish or Perish 8 [17]. We

then used the same search string tailored with (”smart-

meter data”OR ”user-level data”OR ”residential data”OR

”household data”) in the keyword filter. From our identi-

fication phase, we collected 278 studies. After removing
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duplicates, book chapters, lectures, non-English studies,

non-access 1 study, 137 studies remain. In the screening

phase, we excluded the studies whose title and abstract

specifically mention medium- or long-term load forecast-

ing. We also excluded articles targeting load forecasting in

specific areas such as charge stations, transportation, and

industrial customers. With it, we narrowed our database

down to 55 studies. In eligibility phase, we again filter the

current database to focus on large-scale short-term aggre-

gate load forecasting using smart meter data by evaluat-

ing the models and data for training. This process left us

with 14 studies. Later, we applied a forward search (that

is, studies citing the original work) using Litmaps [18] and

a backward search (that is, studies cited in the original

work) by analyzing the references, which yielded an ad-

ditional 16 studies. In the end, we initiated the study with

a total of 30 studies.

3. LITERATURE REVIEW

We structure our findings as follows: in Section 3.1, we

provide an overview of the datasets in the analyzed stud-

ies; meanwhile, in Section 3.2, we categorize the various

forecasting approaches identified in the literature; and fi-

nally, in Section 3.3, we present a summary of the model

evaluation appearing in the analyzed studies.

3.1 Big Data management

We analyzed the included studies based on the

dataset’s characteristics and the Big Data solution for stor-

age and processing.

3.1.1 Datasets

The datasets used in load forecasting in the large-scale

context vary according to the use case and intention. In

order to provide a holistic overview of the datasets, we

used Big Data’s 5V as Big Data is often characterized on

those terms [5]. These are:

Volume: refers to the massive amount of data gen-

erated from various sources such as smart meters and

weather stations [19]. Traditional toolkits for modeling

might struggle to handle the sheer volume of data col-

lected from smart meters [20]. In the scope of this re-

view, the dataset can contain up to terabytes of data [21],

order of hundred thousand houses [22] or millions of

records [23].

Velocity: denotes the speed atwhich newdata are gen-

erated and the pace at which datamove fromone point to

the next, which is crucial for short-term load forecasting.

Within our included and analyzed studies, velocity usu-

ally ranges from 15 minutes [7, 24], 30 minutes [25, 26]

1The non-excess literature are usually black links in Google Scholar

and cannot be found outside.

and one hour [21] to daily [22], aligning with the needs

for short-term load forecasting.

Variety: denotes the various types of data collected,

including structured data (e.g., time-series load data [21,

27]), semi-structured data (e.g., weather data [8, 19]), and

unstructured data (e.g., user survey, questionnaire [28]).

These exogenous features are important in load forecast-

ing. For example, the effect of meteorological data on

the predictive power of load forecasting systems is well-

studied in [29, 30]. The composition of user types also

contributes to the variety of the datasets. For example,

the dataset covers the mix of rural areas and urban areas

[31, 32] and focuses on a mixture of both residential cus-

tomers and business [23, 33], adding one more layer of

difficulty in discovering the electricity usage pattern.

Veracity: denotes the quality of the data, which can

vary greatly. This can include the accuracy of the data, the

trustworthiness of the data source, and how relevant the

data are to the problem. The datasets we analyzed usu-

ally use public datasets such as the Irish Smart meter data

trial [31], Low Carbon London [32], Pecan Street dataset

[34]; or private datasets providedby energy suppliers such

as in [7, 33] and, lastly, synthetic data (i.e., simulated)

from software applications such as EnergyPlus [35, 36].

The public and private datasets still suffer from missing

value, and it is usually handled by data imputation tech-

niques [7, 19] or elimination of entire erroneous time se-

ries [37].

Value: denotes our ability to transform energy data

into value. Insight derived from energy data can im-

prove consumer engagement and efficiency, enhance sys-

tem reliability, uncover energy consumption patterns, and

guide competitivemarketing strategies [38]. For instance,

”Data-as-an-energy” suggests that big data analytics can

yield significant energy savings. ”Data-as-an-exchange”

means integrating and exchanging energy system data

with other sources, which can enhance its overall value.

”Data-as-an-empathy” implies that big data analytics can

improve energy services, better address user needs, and

increase consumer satisfaction [38].

3.1.2 Big Data solution for storage and processing

Many industry-standard solutions exist to store a large

volume of user data. In terms of storage, NoSQL

databases are designed to handle unstructured and semi-

structured data efficiently, allowing flexibility in storing

various data types without the rigid schema requirements

of traditional relational databases [19, 24]. In [39], the

authors provided a performance benchmark of different

databases, e.g. Cassandra, Elasticsearch, MongoDB, and

HBase, to analyze Smart Grids data and concluded that
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Cassandra satisfies all the Big Data characteristic require-

ments and exhibits the highest overall performance in

benchmarked operations such as READ, WRITE in a

database. Meanwhile, for processing tasks, scalable fore-

casting systems within the realm of Big Data may re-

quire distributed computing-supported solutions such as

Spark [20, 40, 41] and Hadoop [21].

3.2 Forecasting Approach

We categorize the studies analyzed into three main ap-

proaches 2: integrated load forecasting, residential-based

load forecasting, and cluster-based load forecasting, com-

prising a total of six distinct branches, as depicted in

Fig. 2). These approaches transformmultiple load profiles

at the user level into an aggregate forecast for an area,

neighborhood, city, country, or even balancing groups rel-

evant to energy suppliers.

3.2.1 Integrated load forecasting

The integrated approach applies transformation on all

load profiles in the training set before forecasting only at

the aggregate level. Themost popular and simplest trans-

formation is to sum all available load profiles into an ag-

gregate load profile [20, 21]. Exogenous variables are usu-

ally incorporated as input to achieve better performance

on a large scale. [20] indicates that at the aggregate level,

the correlation between the load profile and the weather

data is greater than at the user level. The models tested

in this approach include, but are not limited to, Linear Re-

gression (LR), Tree-Based (TB) models [20, 42, 43] and are

accelerated by parallel training. In addition, to increase

accuracy for load forecasting, similar periods along the

temporal axis are grouped for training [21]. The practice

of grouping similar periods is similar to clustering (see Sec-

tion 3.2.3).

In addition to the aggregation step (see Fig. 2), a more

complex transformation can be applied. For example, au-

thors in [23] treated each customer as a feature and per-

formed a Hierarchical Principal Component Analysis (PCA)

to reduce the dimensionality of the data but keep the

temporal axis intact. A model can be fit to the trans-

formed data to forecast energy consumption at the aggre-

gate level.

3.2.2 Residential-based load forecasting

This approach involves training and forecasting indi-

vidual load profiles and aggregating the forecast result

to achieve the aggregate-level prediction. We refer to

two distinct approaches from our classification: Multiple-

model and Global-model approach.

2In our writing, to be consistent, approach indicates the workflow

from data to produce forecast, and method indicates both forecasting

model and forecasting approach.

The Multiple-model approach requires training a

model [27] (or models [21]) for each load profile inde-

pendently. However, this approach can introduce a high

computational cost, as the training time scales linearly

with the number of load profiles in the sequential setup.

To mitigate this problem, [22] exploited parallel training

and shared memory in Graphical Processing Unit (GPU)

to build each Multi-Layer Perceptron (MLP) model per

load profile for each user, with a total of 160000 users.

On the other hand, the Global-model approach aims

to produce a general forecast model that is capable of

accurately forecasting even at the residential level. The

feasibility of this approach lies in the expressiveness of

the Deep Learning (DL) models and the increasingly avail-

able smart meter data at the residential level for training.

A variant of this approach is transfer learning, in which

a general model is developed and adapted to different

household data [44]. The models used in these regimes

are usually complex, such as Recurrent Neural Network

(RNN) [45] and transformer models [46]. Another type of

DL architecture that simultaneously leverages the infor-

mation of all load profiles is Graph Neural Network (GNN).

Thesemodels discover the hidden relations between load

profiles themselves and perform load forecasting in every

load profile simultaneously. The authors in [47, 48] evalu-

ate the GNN-based models in aggregate Short-term Load

Forecasting (STLF) and find positive results.

3.2.3 Cluster-based load forecasting

In this approach, by analyzing customer profiles, sim-

ilar customers are grouped to improve the performance

of load forecasting systems [49]. Consumption demand is

highly volatile at the residential level due to customer be-

havior, but by clustering similar profiles, forecasting mod-

els can more easily identify common patterns in train-

ing data, leading to more accurate predictions. Two ap-

proaches can be taken to leverage the similarity between

customers:

On the one hand, the Cluster-based aggregate ap-

proach first aggregates similar load profiles within a clus-

ter to generate a single load profile. This load time series

typically exhibits a smoother trend and adheres to consis-

tent patterns, from which a model can learn [24, 26]. The

model can then learn from this load profile and produce

a single forecast. The forecast outputs of each cluster are

then aggregated to produce a single load forecast [7, 8,

19]. The forecastingmodels usually used for this approach

range from statistical models [50], LR, Support VectorMa-

chine (SVM), MLP to TB models [8, 24, 26].

On the other hand, the Cluster-based global approach

leverages similar patterns of profiles within the group to
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produce accurate forecasts at the residential level [45].

This approach is very similar to the global-model ap-

proach, with an additional clustering step to reduce het-

erogeneitywithin the training dataset. Wehave not found

any study evaluating this load forecasting approach at the

aggregate level.

A critical step for cluster-based approaches is to identify

the similarity between customers. A common approach

is to directly compare historical loads in a predefined pe-

riod [7, 50]. Besides, the quantities engineered from the

load profiles, such as the load ratio, the average daily load

can also classify similar customers [25, 41].

The most popular method for clustering is k-

means [51]. In the standard implementation of k-means,

the time and space complexity of k-means is linear to

the number of points, which implies that it is scalable

to the size of the dataset. However, the performance

of k-means is prone to outliers and initialization of

centroids. This disadvantage can be overcome by

k-medoids [52], k-medians [33], DBSCAN [27] and hier-

archical clustering [21], but their time complexity and

ease of implementation make them less popular than

k-means [53].

Most clustering algorithms depend on the notion of dis-

tance metrics between two entities, e.g., customer pro-

files. Euclidean distance is the most prominent metric for

measuring the similarity between customers [51]. Alter-

natively, in terms of comparing historical load, Dynamics

Time Wrapping (DTW) is sometimes used to take into ac-

count the speed of the two time series [49]. However,
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this metric takes quadratics time complexity in terms of

temporal axis compared to linear time in Euclidean met-

rics, making it less favored when dealing with extensive

recorded periods.

Lastly, to determine the optimal number of clusters,

two of the most popular methods are using the Silhou-

ette score [50] and the elbow method [24]. In contrast to

these techniques, the optimal number of clusters can also

be chosen tominimize validation errors after the forecast-

ing step [7].

3.3 Model evaluation

Model evaluation is an important step in assessing fore-

casting models’ performance. To objectively evaluate the

model, practitioners and researchers use error metrics.

In the literature, we observed that metrics that are in-

dependent of scale and express error as a relative devi-

ation from the actual values are used more frequently.

Among the articles analyzed, Mean Absolute Percentage

Error (MAPE) is the most common metric for load fore-

casting, followed by Normalized Root Mean Square Error

(NRMSE). However, there are two different definitions of

NRMSE in the literature [8, 54], which complicates the

performance comparison.

In terms of scale-dependence metrics that produced

an error in the power unit, the most frequently used are

Mean Absolute Error (MAE) and Root Mean Square Error

(RMSE). When evaluating at the aggregate level, it is im-

portant to take into account the scale of aggregation and

the forecast horizon.

In addition, a common practice in model evaluation is

to compare the proposed methods with the existing lit-

erature. In terms of forecasting models, from our ob-

servation, only one of 24 articles includes a simple pre-

diction such as average mean as a baseline model [27].

Most of the time, proposed models are only compared

with other models, e.g., SVM, MLP [27, 47, 48] which are

well-studied in the literature. However, thesemodelsmay

not be used at an industrial level and do not give further

insight into how to compare the proposed method with

basic and easy-to-implement models. In contrast, studies

proposing forecasting approaches often provide quantita-

tive assessment compared to the aggregated approach,

which is usually used from the industrial perspective [8,

20, 26].

Lastly, to ensure compatibility and transparency, com-

mon benchmark datasets are also important in model

evaluation. This concept is popular in various research

domains, such as time series forecasting [55]. In terms

of large-scale STLF, the authors in [36] have introduced

BuildingsBench [56], a platform to benchmark the STLF

models. The dataset comprises both real smart-meter

data collected from residential and commercial build-

ings, as well as simulated smart-meter data representing

900,000 buildings. Such efforts are crucial in facilitating

the comparison and improvement of forecasting models

in the field.

4. DISCUSSION

Our literature review examines data used in large-scale

STLF and categorizes the analyzed studies into six fore-

casting approaches. In this section, we discuss the perfor-

mance comparisons between these approaches, the rela-

tionship between data volume and forecasting methods,

and the trend toward increasing complexity in forecasting

models within this research domain.

Performance comparison between different ap-

proaches: Researchers have made several attempts

to compare the effectiveness of different forecasting

approaches. For example, in [27], a performance

comparison between the integrated approach and

the multiple-model approach on 69 household data

demonstrates that the former performs better around

(maximum) 1% in MAPE metrics. On a much larger

scale and hence more heterogeneous, authors in [22]

built each MLP model per load profile for 160000 user

datasets and achieved better performance than the

integrated approach of 0. 32% in MAPE. These results

demonstrate some potential in STLF from the residential

level. The cluster-based approach adds some flexibility

to the forecasting since the number of clusters can be

chosen to maximize the performance of the model.

For instance, authors in [8, 26] conducted a thorough

evaluation of the number of clusters in the Commission

for Energy Regulation (CER) dataset [31] and suggested

that an optimal number of clusters could significantly

reduce forecast errors. Furthermore, in the integrated

approach, by transforming the original load profiles via

PCA and then training the model with reduced features,

the experimental results in [23] suggested that this

method could produce superior results compared to the

aggregate and cluster-based approaches.

Effect of data volume on forecasting methods: The

proliferation of available training data constraints the

forecasting methods. Authors in [42] pointed out that the

load forecasting system for Big Data should possess a fast

parallel computing characteristic. Memory is also a fac-

tor to consider. For instance, although K-Nearest Neigh-

bors (K-NN) is a straightforward forecasting model, it is

unsuitable for Big Data applications due to its demand

for considerable memory to store all data points for pre-

diction [20]. Other methods, such as LR and TB models
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which support parallel computing, are used widely [42,

43]. These models are also implemented in distributed

computing solutions such as MLLib in Spark [41], making

them more accessible to practitioners. In terms of fore-

casting approaches, when entering the regimeof Big Data,

the most common approach for load forecasting is still to

aggregate household load profiles together [20]. In the

scope of our review, only a handful of studies, for exam-

ple, [8, 26], consider varying the number of load profiles

in the cluster-based aggregate approach and discover that

increasing size of datasets can increase the performance

of the proposed method. However, the evidence on the

effects of increasing data volume on a proposedmodel re-

mains fragmentary since most studies report the results

with their predefined dataset without changing the size.

We believe that this research question deserves to be ex-

plored in more in-depth reviews.

Towards more complex methods: Traditionally, large-

scale STLF are usually studied using Machine Learning

(ML) algorithms, and the aggregated approaches (cluster-

based or not) are performed to incorporate all informa-

tion from smart-meter data. As deep learning models ad-

vance in load forecasting, there is a growing focus on zero-

shot STLF, where a pre-trained model [28, 57] is tested on

a new dataset without further adjustment, and transfer

learning [44, 58], where a pre-trained model is fine-tuned

for a specific domain. These models can provide a more

accurate forecast. In terms of forecasting approach, more

and more studies focus on building scalable deep learn-

ing methods that can handle large datasets with alterna-

tive approaches to traditional ones. For example, by ap-

plying spectral clustering to the K-nearest neighbor graph

derived from the CERdataset [31], the approach proposed

in [59] can handle up to more than 6000 time series col-

lected in one year and a half. At the same time, the work

in [22] shows promise in the individual-based approach

in handling large datasets through parallel computing and

memory management in GPU.

5. CONCLUSION AND OUTLOOK

Our two-step literature review examines various meth-

ods and frameworks for short-term aggregate load fore-

casting on a large volume of smart-meter data. We

place emphasis on the data and categorize forecast-

ing approaches into three primary classes: integrated,

residential-based, and cluster-based approaches. We also

provide insight into the performance comparisons be-

tween different approaches. Various remarks on the po-

tential and constraints of the existing methods are dis-

cussed. However, we acknowledge that the scale of this

study is still limited, and certain areas of load forecast-

ing using a large volume of smart-meter data are not fully

covered. For example, the literature on cluster-based ap-

proaches is not included in the search string and is found

mainly using backward/forward searches. For future re-

search, our aim is to improve the search protocol to cover

more studies on large-scale aggregate STLF, develop the

forecasting approaches categorization proposed in this

study, and provide amore comprehensive quantitative as-

sessment between different forecasting approaches.
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