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ABSTRACT 
In this paper, the energy management (EM), and 
optimization of a microgrid including photovoltaic, wind 
turbine, micro-turbine, fuel cell, and battery energy 
storage is implemented considering demand response 
(DR). The optimization of the microgrid is performed 
with the presentation of a three-dimensional objective 
function including minimizing the costs of energy loss 
(ELC), operation (OC), and emission (EC) satisfying the 
operational and components constraints. In this 
research, an improved transient search optimizer based 
on golden sine strategy (MOTSOGS) via fuzzy decision-
making is used to optimize the position and size of the 
microgrid components. The outcomes cleared that the 
energy resources integrated with the energy storage 
using the proposed optimizer are capable of supplying 
the microgrid load in conditions without and with DR. 
Also, the obtained results demonstrated that considering 
DR, reduced ELC, OM, and EC by 10.80%, 9.68%, and 
8.01%, respectively compared to the case without DR. 
Moreover, the superiority of the MOTSOGS is confirmed 
to solve the problem compared with MOPSO. 
 
Keywords: Microgrid, Energy Management, Operation 
and Emission Cost, Golden Sine Strategy, Multi-objective 
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1. INTRODUCTION 
Microgrids are small-scale energy systems that can 

operate in two modes: on-grid or off-grid [1].These 
systems often combine a number of energy sources, such 
as solar photovoltaics (PV), wind turbines, and biomass, 
with modern technology including energy storages and 
demand response mechanisms [2].  

 
 

The use of renewable energy in microgrids provides 
various benefits while also posing multiple issues. The 
production of renewable energy is frequently 
characterized by intermittency and variability due to 
weather conditions and daily cycles [3]. Furthermore, the 
variable nature of electrical demand makes the supply-
demand balance difficult to maintain. To address these 
difficulties, complex energy management (EM) strategies 
must be developed and implemented to improve the 
functioning and optimization of the microgrid [4]. 
Numerous research have investigated microgrid energy 
management, with an emphasis on different factors of 
microgrid management and optimization. Researchers 
have suggested a variety of tactics and methodologies 
for managing energy flow, balancing supply and load, 
and increasing the use of energy sources inside 
microgrids. In [5], a grasshopper optimization algorithm 
(GOA) is integrated with an EM strategy to reduce 
operational costs. In [6,] a fuzzy grey wolf optimizer 
(FGWO) is used for both EM and storage sizing in a 
microgrid with the goal of minimizing production costs. 
The boosted beluga whale optimizer (BBWO) is 
suggested for EM in order to optimize battery energy in 
a microgrid and reduce operating expenses [7]. In [8], a 
method of management aiming at determining the most 
effective operation of a microgrid is described as an 
optimization approach to reduce operating expenses 
based on a distribution system management method. 
The barnacles mating optimizer (BMO) is used in [10] for 
optimization of a microgrid employing energy sources 
and battery energy storage.  

The contributions to this publication are presented 
as follows:  
-Optimizing a microgrid to reduce energy loss, 
operational costs, and emissions while considering 
demand responsiveness.  
-Developing a three-dimensional objective function to 
optimize the microgrid.  
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-Using of a multi-objective transient search optimization 
method based on Golden sine strategy (MOTSOGS), to 
optimize energy management in microgrids with fuzzy 
decision-making.  

2. METHODOLOGY 
    In this paper, a multi-objective optimization model 
for microgrid EM and optimization is proposed, taking 
into account the DR and MOTSOGS, with the goal of 
minimizing energy loss, operational costs, and emission 
costs. The microgrid is made up of photovoltaic (PV), 
wind turbine (WT), microturbine (MT), fuel cell (FC), and 
battery energy storage.  

2.1 Modeling of the DR 

The DR is considered an incentive-based scheme. The 
formulas listed below show that their behaviors can be 
represented. This study categorizes consumers of 
electricity under three groups: residential, commercial, 
and industrial. Limitations necessitate that each user's 
overall amount of energy saved per hour be below or 
equal to the maximum quantity of its offerings [3]. 

𝑅𝑃(𝑟, 𝑡) = 𝑅𝐶(𝑟, 𝑡). 𝜉𝑟,𝑡     , 𝑅𝐶(𝑟, 𝑡) ≤ 𝑅𝐶𝑡
𝑚𝑎𝑥  

𝐶𝑃(𝑐, 𝑡) = 𝐶𝐶(𝑐, 𝑡). 𝜉𝑐,𝑡     , 𝐶𝐶(𝑐, 𝑡) ≤ 𝐶𝐶𝑡
𝑚𝑎𝑥  

𝐼𝑃(𝑖, 𝑡) = 𝐼𝐶(𝑖, 𝑡). 𝜉𝑖,𝑡    , 𝐼𝐶(𝑖, 𝑡) ≤ 𝐼𝐶𝑡
𝑚𝑎𝑥  

(1) 
(2) 
(3) 

Where, r, c, and i refer to the residential (RC), 
commercial (CC), and industrial (IC) customers number; 
𝑅𝐶(𝑟, 𝑡), 𝐶𝐶(𝑐, 𝑡), and 𝐼𝐶(𝑖, 𝑡) are demand reduction 
value by each RC, CC, and IC customer at time t; 𝑅𝐶𝑡

𝑚𝑎𝑥, 
𝐶𝐶𝑡

𝑚𝑎𝑥 , and 𝐼𝐶𝑡
𝑚𝑎𝑥  denote the maximum suggested 

demand reduction via each customer at time t; 𝜉𝑟,𝑡 ,, 

𝜉𝑐,𝑡 , and 𝜉𝑖,𝑡  are payment value of incentive to each 
customer at time t; and 𝑅𝑃(𝑟, 𝑡), 𝐶𝑃(𝑐, 𝑡), and 𝐼𝑃(𝑖, 𝑡) 
refer to the cost of demand decreasing by RC, CC, and IC 
consumers at time t for the suggested demand 
decreasing, respectively. 

2.2 Modeling of the OF  

   The microgrid [3] is optimized using a three-
dimensional objective function that includes lowering 
the costs of energy loss (ELC), operation (OC), and 
emissions (EC) while meeting operational and 
component restrictions. 
Energy loss cost (ELC): The power loss of the microgrid is 
calculated by  

𝐸𝐿𝐶 = ∑ 𝑃𝐿𝑜𝑠𝑠

𝑇

𝑡=1

(𝑡) × 𝐶𝐿𝑜𝑠𝑠 

 

(4) 

Where, 𝑃𝐿𝑜𝑠𝑠 is power loss, 𝐶𝐿𝑜𝑠𝑠 ($0.06) denotes cost 
of per kW of power loss, and T is simulation period (24 
hours).  

Operating cost (OC): The OC includes the cost of grid-
purchased power, the cost of microgrid components for 
energy generation and storage, as well as the cost of 
demand response, as follows [3, 12]: 

𝑂𝐶 = ∑ 𝑃𝐺𝑟𝑖𝑑(𝑡)

𝑇

𝑡=1

. 𝐶𝐺𝑟𝑖𝑑  

+ ∑ ∑ 𝑃𝐶𝑜𝑚(𝑡)

𝑇

𝑡=1

. 𝐶𝑐𝑜𝑚

𝑁𝐶𝑜𝑚

𝑖=1

  

 
(5) 

Where, 𝑃𝐺𝑟𝑖𝑑 is purchased power from the main grid, 
𝐶𝐺𝑟𝑖𝑑  is grid price for per Kw, 𝑁𝐶𝑜𝑚  is the OC of the 
components for energy production (PV, WT, MT, and FC) 
, storage (Battery) and also DR. 𝐶𝑐𝑜𝑚 is price of per unit 
capacity of per components.  
Emission cost (EC): The emission cost determines the 
pollution created by DG devices and the main grid at the 
time of purchase. Pollutants include CO2, SO2, and NOx, 
and the outcome of the emission cost can be calculated 
as follow. 

𝐸𝐶 = ∑ 𝐶𝐸𝑚𝑖𝑠𝑠−𝐷𝐺(𝑡)

𝑇

𝑡=1

 + ∑ 𝐶𝐸𝑚𝑖𝑠𝑠−𝐺𝑟𝑖𝑑(𝑡)

𝑇

𝑡=1

  
 

(6) 

Where, 𝐶𝐸𝑚𝑖𝑠𝑠−𝐷𝐺(𝑡)  and 𝐶𝐸𝑚𝑖𝑠𝑠−𝐺𝑟𝑖𝑑(𝑡) are the 
pollution cost of energy units and the pollution cost of 
grid-purchased power, respectively. 

2.4 Modeling of the CNSs  

 Power balance  

∑ 𝑃𝐷𝐺,𝑖  

𝑁𝐷𝐺

𝑖=1

+  𝑃𝐺𝑟𝑖𝑑  = 𝑃𝑑 − 𝑃𝐷𝑅   

 

(7) 

Where, 𝑃𝐷𝑒𝑚𝑎𝑛𝑑 and 𝑃𝐷𝑅  represent the power 
required through the load and the not-met power 
according to the DR at time t, respectively. 

 DR 
𝑃𝐷𝑅  is the amount of interested involvement in 
DR taking into account residential demand cost (RC), 
commercial demand cost (CC), and industrial 
demand cost (IC) and defined by  

𝑃𝐷𝑅 = ∑ 𝑅𝐶(𝑟, 𝑡)

𝑟

+ ∑ 𝐶𝐶(𝑐, 𝑡)

𝑐

+ ∑ 𝐼𝐶(𝑖, 𝑡)

𝑖

 (8) 

 DGs power 
 

𝑃𝐷𝐺𝑖−𝑚𝑖𝑛(𝑡) ≤ 𝑃𝐷𝐺𝑖 ≤ 𝑃𝐷𝐺𝑖−𝑚𝑎𝑥  (9) 
 
Where, 𝑃𝐷𝐺𝑖−𝑚𝑖𝑛 and 𝑃𝐷𝐺𝑖−𝑚𝑎𝑥 denote maximum 
and minimum size of DG.  

 Battery size 
Because there are constraints to charging and 
discharging in storage throughout each time period, the 
stored energy value with the charge/discharge 
amount of the battery are restricted [3, 12] by 
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𝐸(𝑊𝑏(𝑡)) = 𝐸(𝑊𝑏(𝑡 − 1)) + 𝜂𝑐ℎ × 𝐸(𝑃𝑐ℎ(𝑡)) × ∆𝑡

−
1

𝜂𝑑𝑐ℎ

𝐸(𝑃𝑑𝑐ℎ(𝑡)) × ∆𝑡 

{

𝑊𝑏𝑚𝑖𝑛 ≤ 𝐸(𝑊𝑏(𝑡)) ≤ 𝑊𝑏𝑚𝑎𝑥

𝐸(𝑃𝑐ℎ(𝑡)) ≤ 𝑃𝑐ℎ𝑚𝑎𝑥

𝐸(𝑃𝑑𝑐ℎ(𝑡)) ≤ 𝑃𝑑𝑐ℎ𝑚𝑎𝑥

 

(10) 

 

Where, 𝑊𝑏(𝑡)  and 𝑊𝑏(𝑡 − 1)  represent the energy 
stored in the battery at time t and t-1, respectively. 
𝑃𝑐ℎ(𝑡)  and 𝑃𝑑𝑐ℎ(𝑡) represent the charge and 
discharge capacity of the battery bank at time t, while 
𝜂𝑐ℎ  and 𝜂𝑑𝑐ℎ  represent the battery's charge and 
discharge efficiency, respectively. 𝑃𝑐ℎ𝑚𝑎𝑥  and 𝑃𝑑𝑐ℎ𝑚𝑎𝑥  
represent the battery's highest charge and discharge 
capacities, respectively. 
 

2.3 Proposed optimizer and implementation  

2.3.1 TSOGS 

    In this study, TSO [13] is employed to improve the 
EM and optimization of the microgrid under 
consideration. The concept is inspired by the transitory 
properties of electrical circuits that include energy 
storage components like capacitors and inductors [13].     
Also, a golden sine technique [14] is used in TSO to aid 
Individuals enter the exploratory stage in changing their 
places, and the improved TSO is called (TSOGS). This 
technique uses the sine function and the golden average 
factor to enhance the search process's efficiency. In 
accordance with the findings in Ref. [14], the expansion 
steps associated with the golden mean factor are 
constant, needing Just a single iteration per step. 
Integrating the golden average with the sine function, 
optimal amounts can be determined more quickly while 
also reducing the chance of becoming caught in local 
optima. 
2.3.2 Multi-objective TSOGS (MOTSOGS) 

    A multi-objective issue entails optimizing numerous 
contradicting objectives simultaneously while adhering 
to a number of constraints. As a result, the main 
objective of tackling the problem through optimization 
with various objectives is to determine the Pareto front 
[8] of the ideal solution so as to create a feasible 
compromise within each goal. The Pareto front contains 
numerous solutions. Planners utilize instinct as a primary 
tool to select the best answer from a set of Pareto 
options using fuzzy decision-making. The membership 
function of the zth function that links the kth optimal 

Pareto solution (𝜇𝑍
𝑘) is stated as follow. 

min

max
min max

max min

max

1, ( )

, ( )

0, ( )

Z

Z Z

k Z Z
Z Z Z

Z Z

Z Z

f X f

f f
f f X f

f f

f X f



 



  


 

  
(11) 

Consequently, the compromised answer is computed as 

𝑚𝑎𝑥{𝜇𝑘 (𝑋)} (12) 
The greatest value represents the finest compromise answer. 

2.3.3 Implementation 

   This section describes the MOTSOGS implementation 
process for optimizing the microgrid EM.  
Step 1: Establish technical and economic components for 
microgrid data and main grid.  
Step 2: Determine the optimization variables.  
Step 3: Determine the target function amount (Eq. (12)) 
for every set of random variables that meets the 
restrictions. 
Step 4: Identify the non-dominant answers. 
Step 5: Archive the non-dominated solutions.  
Step 6: Identify the most desirable non-dominant 
options.  
Step 7: Update the algorithm population.  
Step 8: Archive the new dominated answers. 
Step 9: Eliminate the dominating answers from the 
archive.  
Step 10: Update the optimizer population using the 
golden sine strategy. 
Step 11: Archive the new dominated answers and 
eliminate the dominated answers into the archive. 
Step 12: Are the convergence requirements fulfilled? If 
the answer is yes, proceed to Step 13, otherwise to Step 
2.   
Step 13: Stop the optimizer and save the final answer. 

3. SIMULATION RESULTS AND DISCUSSION 

3.1 Data 

    Fig. 1 depicts a 33-bus distribution microgrid 
consisting of MT, WT, PV, FC, and battery without and 
with DR. The microgrid line data is obtained via Ref. [3, 
16].  

 
Fig. 1. The studied 33-bus distribution microgrid 
   Figures 2-5 [3] show the predicted hourly power of 
the PV and WT units, the network's peak load % over 24 
hours, and the grid pricing. Tables 1 and 2 show the grid 
pricing and emission coefficients for various ERs, as well 
as the recommended DR program. 
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Fig. 2. Predicted PV power for 24 hours [3] 

 
Fig. 3. Predicted WT power for 24 hours [3] 

 
Fig. 4. % of network peak load for 24 hours [3] 

 
Fig. 5. The market price of the grid power [3]  
Table 1. Power cost and emission coefficients of DGs [3, 
16] 

Unit Type Bid 
($/kWh) 

CO2 
(kg/MWh) 

SO2 
(kg/MWh) 

NO2 
(kg/MWh) 

Pmin 
(kW) 

Pmax 
(kW) 

1 MT 0.457 720 0.0036 0.1 0 300 

2 PAFC 0.294 460 0.003 0.0075 0 300 

3 PV 2.584 0 0 0 0 300 

4 WT 1.073 0 0 0 0 300 

5 BA 0.38 10 0.0002 0.001 -
300 

300 

6 Grid - 950 0.5 2.1 -
300 

300 

 

Table 2. The details of DR package [12] 
Quantity 

(kW) 
0-5 5-20 20-30 30-60 

Price 
($/kWh) 

0.04 0.07 0.28 0.43 

 

The efficiency of the recommended framework is 
simulated and tested in the following cases: 
• Case I) EM and optimization of microgrid with 
MOGSTSO without DR using MOTSOGS  
• Case II) EM and optimization of microgrid with 
MOGSTSO with DR using MOTSOGS 

3.2 Results without and with DR 

   Case I presents the results of EM and optimization of 
a microgrid using MOGSTSO without DR to minimize the 
ELC, OC, and EC costs. In these scenarios, the effect of 
including DR is compared to EM and microgrid 
optimization without DR. Figures 6 (a) and 6 (b) 
demonstrate the Pareto optimal solution sets achieved 
for examples 1 and 2 via the MOGSTSO. According to the 
Pareto solution set, case 2 has higher dispersion than 
case I, as shown in Figs. 6 (a) and (b), respectively. 

 
(a) 

 
 (b) 

Fig. 6. Pareto solution set for a) without DR and b) with 
DR 

   Figure 7 displays the final answer, incorporating the 
optimal capacity of microgrid equipment among the 
non-dominated possibilities, as determined according to 
the decision-making approach in examples I and II. 
Furthermore, Figure 8 depicts battery power in two 
scenarios: with and without DR. 

 
(a) 



5 

 
 (b) 

Fig. 7. The best solution obtained for optimization a) 
without DR and b) with DR 

 
 (a) 

 
 (b) 

Fig. 8. a) Battery power for optimization a) without DR 
and b) with DR 

   According to Tables 3-4, the results show that 62 kW 
PV power, 189 kW wind power, 874 kW battery power, 
246 kW MT power, and 248 kW FC power in scenario I, 
and 42 kW PV power, 221 kW wind power, 900 kW 
battery power, 250 kW MT power, and 247 kW FC power 
in case I. In case I, the ELC, OC, and EC are calculated at 
67.96, 10400.30, and 7754.51, respectively, and these 
values are obtained at 60.62, 9392.53, and 7132.62, 
respectively for case II. Therefore, the utilization of DR 
results in more reduction of ELC, OC, and EC compared 
to the case without considering the DR (Case I). The 
obtained results of the different cases demonstrated 
that considering DR, reduced ELC, OM, and EC by 10.80%, 
9.68%, and 8.01% compared to the case without DR 
(Case I). 
Table 3. The best solution for a) without DR and b) with 

DR 
Device PV WT Battery MT FC 

Case I      
Size (kW) 62 189 874 246 248 

Location 
(Bus) 

28 32 33 6 12 

Cost ($) 1216 2605 435 1667 1115 

Case II      

Size (kW) 42 218 900 244 247 

Location 
(Bus) 

21 32 23 8 3 

Cost ($) 826 3042 482 1436 980 

 

Table 4. Value of cost functions a) without DR and b) 
with DR 

Item/Scenario Case I Case II 

Cost of Energy Loss, CEL ($) 67.96 60.62   

Cost of Operation, CO ($) 10400.30 9392.53   

Cost of Emission, CE ($)      7754.51 7132.62  

   The changes of microgrid active power loss before 
and after optimization are shown in Fig. 9, for two cases 
without and with DR. As can be seen, by optimizing the 
microgrid, its losses have been reduced significantly in all 
hours of the study. Also, considering the DR will reduce 
the cost of energy losses more compared to not 
considering it. 

 
(a) 

 
(b) 

Fig. 9. Power loss of microgrid for a) without DR and b) 
with DR 

3.3 Evaluation of the MOTSOGS superiority  

   Using 20 different runs of Case II, the numerical 
results from the MOTSOGS, MOTSO, and MOPSO 
algorithms are compared. The results of the previously 
stated optimizers were compared using the C index (CI). 
The CI clears the percentage of dominant solutions of a 
multi-objective optimizer compared with another one. In 
Table 5, the results of ELC, OC, and EC for each algorithm 
are presented. As given in Table 5, the MOTSOGS has 
obtained the lowest ELC, OC, and EC compared to the 
MOTSO, and MOPSO. Also, in Table 6, C index analysis is 
presented for different multi-objective optimizers. The 
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results demonstrated that the MOTSOGS has higher 
dominant solutions by 74.28 %, and 68.28 % compared 
with the MOTSO, and MOPSO. These findings confirmed 
the superiority of the MOTSOGS integrated with gold 
sine strategy in comparison with the MOTSO, and 
MOPSO optimizers.      
Table 5. Value of cost functions for MOTSOGS, MOTSO, 

and MOPSO 
Item/Scenario MOTSOGS MOTSO MOPSO 

Cost of Energy Loss, CEL 
($) 

60.62   65.04   62.14   

Cost of Operation, CO ($) 9392.53   9638.26   9424.18   

Cost of Emission, CE ($)      7132.62  7250.33  7185.02  
 

Table 6. CI analysis for MOTSOGS, MOTSO, and MOPSO 
C Index Mean Std Maximum Minimum 

C(MOTSO, MOTSOGS) 74.28   28.63   100.00   0 

C(MOTSOGS, MOTSO) 24.05   18.56   36.27   11.74 

C(MOPSO, MOTSOGS) 68.28   24.66   87.30   8.21 

C(MOTSOGS, MOPSO) 23.54  29.02  46.91  19.45 

 

4. CONCLUSION  
 

This study presents optimization of a microgrid with 
different energy resources and storage system 
incorporating DR.  The findings in two cases without and 
with considering the DR, respectively cases I, and II under 
a three-dimensional optimization framework based on 
fuzzy decision-making are presented as follows: 
-In case I, the ELC, OC, and EC are calculated at 67.96, 
10400.30, and 7754.51, respectively and these values are 
obtained at 60.62, 9392.53, and 7132.62, respectively for 
case II.  
-The utilization of DR in EM and optimization of microgrid 
has resulted in decreasing the capacity of power 
production in the microgrid and increasing the storage 
level compared to the optimization without DR. 
-The results demonstrated that the MOTSOGS has higher 
dominant solutions by 74.28 %, and 68.28 % (Mean 
value) compared with the MOTSO, and MOPSO. These 
findings confirmed the superiority of the MOTSOGS 
integrated with gold sine strategy in comparison with the 
MOTSO, and MOPSO optimizers.      
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