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ABSTRACT 
Accurate modeling of end-users’ decision-making 

behavior is crucial for validating demand response (DR) 
policies. However, existing models usually represent the 
decision-making behavior as an optimization problem, 
neglecting the impact of human psychology on decisions. 
In this paper, we propose a Belief-Desire-Intention (BDI) 
agent model to model end-users’ decision-making under 
DR. This model has the ability to perceive environmental 
information, generate different power scheduling plans, 
and make decisions that align with its own interests. The 
key modeling capabilities of the proposed model have 
been validated in a household end-user with flexible 
loads. 
 
Keywords: demand response, decision-making model, 
BDI agent, household power scheduling 

NONMENCLATURE 

Abbreviations  
 BDI 
 DR 
 HEMS 
 MCDM 
 AC 
 EWH 
 WM 
 DW 

Belied-desire-intention 
Demand Response 
Home Energy Management System 
Multi-criteria Decision Making 
Air Conditioner 
Electric Water Heater 
Washing Machine 
Dishwasher 

1. INTRODUCTION 
Demand response (DR) is recognized as an efficient 

technology to reduce peak electricity loads [1]. The basic 
idea of DR is that household end-users can reduce their 
electricity consumption during peak hours in response to 
the incentive price from utility grids [2]. The reaction of 
end-users is crucial for the success of DR [3]. Hence, the 
accurate modeling of end-users’ decision-making is 
important for evaluating the effectiveness of DR policies. 
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Currently, the decision-making problem for end-
users under DR is typically formulated as an optimization 
problem [4]. The optimal power scheduling plan is 
derived by solving an optimization model under DR 
signals [5]. Various optimization models have been 
employed to address the decision-making problem, 
including linear programming [6] and nonlinear 
programming [7]. These optimization models have 
different objective functions and constraints. Regarding 
optimization objectives, the most common objective is 
the minimization of operation cost. Additionally, end-
user discomfort resulting from adjusting set-points of 
temperature-controlled loads and altering the operation 
times of shiftable loads, are also considered. In terms of 
constraints, the focus is primarily on decision variable 
constraints, ensuring that the optimized decision 
variables remain within allowable ranges. For example, 
the optimal temperature for temperature-controlled 
loads should be maintained within the comfortable 
temperature range. 

However, the actual decision-making process for 
end-users is not a simple optimization process. Just like 
humans make decisions, end-users should select what 
they consider the most appropriate power scheduling 
plan from a set of possible plans based on the DR signals. 
Firstly, end-users can adjust their acceptable 
temperature tolerance range based on their perception 
of the incentive electricity price, which depends on the 
knowledge they possess. Secondly, when faced with 
multiple options, end-users typically make decisions 
based on relative values rather than the absolute values 
of economic cost or comfort. Unfortunately, existing 
optimization models often fail to incorporate these 
considerations. It can lead to a misunderstanding of end-
user decision-making behavior. 

A cognitive agent model, namely belief-desire-
intention (BDI), has been widely used to model the 
human decision-making process in social science [8]. It is 
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based on three mental modules: beliefs (agent’s 
perceptions about environment and own states), desires 
(goals), and intentions (plans or actions) [9]. The 
performance of the BDI agent model has been validated 
in many fields, such as evacuation simulations [10], 
cropping plan decisions [11], land changes [12] and 
traffic simulations [13]. 

Inspired by this idea, this paper proposes a BDI agent 
model to simulate end-users’ decision-making processes 
under DR. Three mental modules are specifically 
developed to represent the end-user's perception, 
reasoning and decision-making processes under demand 
response. 

2. METHODOLOGY 

2.1 Overview of the proposed model 

The architecture of the proposed end-user decision-
making agent model, based on the BDI paradigm, is 
illustrated in Fig. 1. It is composed of three modules: 
belief module, desire module, and intention module. The 
specific functions of each module can be described as: 1) 
Belief updating. The end-user updates its beliefs by 
continuously observing the environment (e.g., DR signals 
from the utility grids) through the perceptual processor. 
Day-ahead alternative power scheduling plans from the 
household's HEMS are also collected. The beliefs are 
classified into three categories based on their source: 
itself, environment, and power scheduling plans. 2) 
Desire updating. Based on these new beliefs, the end-
user's DR goals are identified through a cognitive 
processor and transformed into desires. The desires are 
hierarchical, encompassing the most basic temperature 
set-point requirements and further extending to cost and 
comfort needs. 3) Intention generation. Based on the 
beliefs and desires, the planner in the intention module 
generates alternative power scheduling plans through a 
multi-objective optimization model (implemented via 
HEMS). The generated plans are stored in the intention 
set and are transformed into the beliefs. A power 
scheduling plan is defined as the temperature and start 
time settings for various flexible household appliances 
(e.g., ACs, EWHs, WMs, DWs) to achieve the end-user's 
goals. The decision-maker uses a multi-criteria decision 
making model to compare the plans. An optimal or 
satisfactory plan is selected from these plans and 
executed through the HEMS. 
 

 
Fig. 1 Overview of the proposed BDI model 

 

2.2 Belief module 

The beliefs of an end-user model are formed by the 
information from the environment and its own internal 
characteristics. The beliefs can be represented by a 
hierarchical structure. It consists of three classes: Itself, 
Environment and Plans. An example of the hierarchical 
structure for an end-user’s beliefs is shown in Fig. 2. Each 
class contains several sub-classes to represent more 
specific concepts. For example, cost-oriented and 
comfort-oriented represent end-users’ personal 
attitudes towards participation in DR. DR signals 
represent the DR environmental information received by 
end-users. The original power plan represents end-users' 
household scheduling plans before DR. The advanced 
power plans represent the optimal scheduling plans 
recommended by HEMS under the DR price signals. 

 

 

Fig. 2 The hierarchical structure for end-users’ beliefs 
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2.3 Desire module 

A desire library stores the collection of an end-user’s 
desires, which are formed based on the existing beliefs. 
In the context of DR, desires can be divided into different 
levels. The most basic level is, for example, end-users 
determining their acceptable temperature adjustment 
range based on perceived price signals. The advanced 
level is, for example, end-users aiming to ensure comfort 
while obtaining more economic benefits when 
participating in DR. 

2.3.1 Temperature adjustment range 

The temperature adjustment range acceptable to 
end-users is related to their perceived DR signals. 
Generally, the higher the incentive electricity price, the 
stronger the end-users' willingness to adjust their 
temperature range, as shown in Figure 3. 

 

 

Fig. 3 The relationship between incentive electricity price 
signals and the temperature adjustment range 

 

2.3.2 Cost and comfort indicators 

Cost and comfort indicators represent typical 
evaluation criteria for different power scheduling plans 
when end-users participate in DR, as detailed below: 

a) Cost indicator 

The cost indicator represents the economic benefits 
the end-user gains from participating in DR. 

1

( ( ) ( ) * )
T

benifit j DR

t j N

F max EP t P t t W IP
= 

=    +   

Where T is the number of time intervals of a day (t 
= 1, …, T); Δt is the time interval [h]; EP(t) is the electricity 

price at time t [CNY/kWh]; △Pj(t) is the change in power 
consumption of flexible load j at time t before and after 
DR [kW]; N is the types of flexible loads including the AC, 
EWH, WM and DW; WDR is the response electricity 
amount during the DR period; IP is the incentive price. 

b) Comfort indicator 

The comfort indicator represents the operating 
time shift deviation φshift of shiftable loads and the set-
point temperature deviation φtcl of thermostatically 
controlled loads. 

1 2( )comfort shift tclF min    =  +   
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Where ω1 and ω2 are the weights; N(s) is the types 

of shiftable loads including the WM and DW; ,

DR

start sT  is 

the starting time of shiftable appliance s after DR [h]; 

,

ori

start sT  is the original starting time of shiftable appliance 

s before DR [h]; N(m) is the types of thermostatically 

controlled loads including the AC and EWH; ,

DR

set mT  is the 

set-point temperature of thermostatically controlled 

appliance m after DR [℃]; ,

ori

set mT  is the original set-point 

temperature of thermostatically controlled appliance m 

before DR [℃]; Tchange is the duration of the temperature 
adjustment [h].  

2.4 Intention module 

In the planner, end-users set their acceptable 
temperature adjustment range under the corresponding 
DR incentive price and generate a series of power 
scheduling plans that can achieve their desired goals. 
These plans are stored in an intention set for decision-
making. In this work, we use a multi-objective 
optimization model to generate these plans, which are 
implemented by HEMS. For details on the multi-objective 
optimization model, refer to the work in [4], which will 
not be elaborated here. 

After obtaining these alternative power scheduling 
plans, the multi-criterion decision model (MCDM) is used 
to represent the selection process of plans. The utility 
function of each plan can be calculated as follows: 

* *benifit comfortUF F F =  +   

Where, α is the weight of cost indicator; β is the 
weight of comfort indicator. 

Finally, the agent selects the plan with the largest 
utility function to commit. 
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3. CASE STUDY 
To demonstrate the key modeling capabilities of the 

proposed BDI decision-making model, a household end-
user was selected as the research subject. The flexible 
loads of this household include a room air conditioners 
(AC), an electric water heater (EWH), a washing machine 
(WM), and a dishwasher (DW). The mathematical models 
for each appliance were established with reference to 
the literature [14,15]. The model parameters are listed in 
Table 1. 
 

Table 1. Model parameters of flexible loads 

Load Type Parameters Value 

AC 

Power (W) 1200 
Efficiency 3.3 

Dead-band (℃) 1 

Original temperature 

setting (℃) 
26 

EWH 

Power (W) 2500 
Efficiency 80% 

Dead-band (℃) 10 

Original temperature 

setting (℃) 
65 

WM 
Power (W) 150 
Switch-on time 19:00 
Operation duration (min) 60 

DW 
Power (W) 200 
Switch-on time 18:00 
Operation duration (min) 90 

 
The daily fixed electricity price for end-users is 1 

CNY/kWh. The utility grids issue DR signals one day in 
advance, including the DR period and the incentive price. 
In this paper, the DR period is set from 17:00 to 20:00. To 
compare the effects of different incentive prices, the 
incentive prices are set at 1.5 CNY/kWh and 2.5 
CNY/kWh. After perceiving electricity price signals, the 
acceptable temperature adjustment ranges for end-
users are shown in Table 2. 
 

Table 2. Acceptable temperature adjustment ranges 
under different incentive prices 

Incentive Price 
Temperature settings 

AC EWH 

1.5 CNY/kWh [25, 27 ℃] [60, 70 ℃] 

2.5 CNY/kWh [23, 29 ℃] [55, 75 ℃] 

 

4. RESULTS 

4.1 Alternative power scheduling plans under different 
incentive electricity prices 

The alternative household power scheduling plans 
under different incentive electricity prices were obtained 
through a multi-objective optimization model. Several 
important plans were selected and were presented in 
Table 3 and Table 4. 

Using the plans ID 1 from Table 1 as an example, it 
represents adjusting the temperature set-point of the 

adjustable load AC to 27 ℃ during the DR period (an 
increase of one degree compared to the original 
temperature setting) for one hour. The economic benefit 
indicator for this plan is 0.1 CNY, the temperature 
deviation indicator is 1 ℃*h, and the time deviation 
indicator is 0 (no adjustment of time-shiftable loads). 
Plans ID 2 represents adjusting the AC set-point 

temperature to 27 ℃ for the entire DR period, lasting 
three hours. The indicators for this plan are as follows: 
the economic benefit indicator is 0.7 CNY, the 
temperature deviation indicator is 3 ℃*h, and the time 
deviation indicator is 0. The same principle applies to 
other plans IDs, and will not be reiterated here. It should 
be noted that the plans displayed in Table 1 only 
represent the indicators for adjusting a single adjustable 
load. Higher economic benefits can be achieved through 
different combinations of load adjustments, such as both 
changing the temperature set-point of temperature-
controlled loads and adjusting the start time of shiftable 
loads, as detailed in Section 4.2. End-users can select 
acceptable power scheduling plans based on the above 
cost and comfort indicators. 
 

Table 3. Power scheduling plans under 1.5 CNY/kWh 
incentive electricity price 

Plans 
ID 

Types of 
adjuste
d loads 

Economic 
Benefit 

Indicator 
(CNY) 

Temperature 
Deviation 
Indicator 

(℃*h) 

Time 
Deviation 
Indicator 

(h) 

1 AC 0.10 1 0 
2 AC 0.70 3 0 
3 EWH 0.73 5 0 
4 EWH 0.94 15 0 
5 WM 0.23 0 1 
6 DW 0.30 0 1 
7 DW 0.60 0 2 

 

In Table 4, plans ID 1 and ID 2 represent adjusting 
the AC set-point temperature to 27 ℃ for 1 hour and 3 
hours respectively (the same as in Table 3). The 
economic benefits achieved are higher due to the 
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increased incentive electricity prices. Plans ID 3 
represents the end-user making a more aggressive 
adjustment to the temperature set-point, setting it to 
29 ℃  under an incentive electricity price of 2.5 
CNY/kWh. Compared to Plans ID 2, this plan results in 
greater economic benefits but also a larger temperature 
deviation. 
 

Table 4. Power scheduling plans under 2.5 CNY/kWh 
incentive electricity price 

Plans 
ID 

Types of 
adjuste
d loads 

Financial 
Benefits 
Indicator 

(CNY) 

Temperature 
Deviation 
Indicator 

(℃*h) 

Time 
Deviation 
Indicator 

(h) 

1 AC 0.14 1 0 
2 AC 0.98 3 0 
3 AC 2.17 9 0 
4 EWH 1.02 5 0 
5 EWH 1.31 15 0 
6 EWH 1.88 30 0 
7 WM 0.38 0 1 
8 DW 0.50 0 1 
9 DW 1.00 0 2 

 

4.2 Power plans selection based on multi-criteria 
decision making model 

Taking the incentive electricity price of 2.5 
CNY/kWh as an example, end-users compared and 
selected different alternative power scheduling plans 
based on a multi-criteria decision model. They ultimately 
determined the plan that satisfied their preferences: 

adjusting the AC temperature set-point to 27 ℃ for 3 
hours; adjusting the EWH temperature set-point to 

60 ℃ for 1 hour; adjusting the WM start time to 20:00; 
and adjusting the DW start time to 20:00, as shown in 
Figure 4. 
 

 

Fig. 4 Selected power scheduling plan of flexible loads: 
(a) AC; (b) EWH; (c) WM and DW 

 

5. CONCLUSIONS 
Accurate modeling of end-users’ decision-making 

behavior is important for evaluating demand response 
policies. Based on paradigms of human decision models 
in the field of social science, this paper proposes a belief-
desire-intention (BDI) agent model to simulate end-
users’ decisions in DR programs. The belief, desire, and 
intention mental modules in the model are concretely 
designed through multi-objective optimization models 
and multi-criteria decision models. This model can 
express the end-user's perception, reasoning, and 
decision-making process. A household end-user with 
various flexible loads such as AC, EWH, WM, and DW is 
modeled to analyze their decision-making process under 
different electricity price signals. The results show that 
the end-user can analyze different household power 
scheduling plans and select the appropriate plan for 
implementation. 

This paper merely proposes a basic framework for a 
human-like decision-making model. In the future, more 
elements can be added to this framework, such as the 
theory of bounded rationality and analysis of end-users’ 
characteristics through social surveys. 
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