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ABSTRACT 
We investigated the relationship between people flow 

and building energy consumption during the summer 
using a state-space model for an office building in Tokyo. 
We estimated the elasticity of people flow for the cooling 
heat load and the power consumption of outlets, water 
supply and drainage pumps, and air conditioning fans. 
The results provide insights that will be valuable for 
spatial downscaling to accurately understand the 
dynamics of energy consumption in individual buildings 
when the use of electricity data. 
 
Keywords: Electricity data, Smart meter, People flow 
data, State space model, Building Energy Management 
System, Carbon neutral 

NONMENCLATURE 
Abbreviations  

 HVAC Heating, Ventilation, and Air 
Conditioning 

BEMS Building Energy Management System 
RMSE Root-Mean-Square Error 
S.E.  Standard error 

Symbols  
 𝑦𝑦 dependent variable 
 𝛼𝛼 state 
 𝛽𝛽 regression coefficient 
 𝜀𝜀 observation error 
 𝜂𝜂 state disturbance 
 𝑡𝑡 time (hourly data) 
 𝐷𝐷 dummy variable 
  𝐻𝐻 variances of ε 
  𝑄𝑄 variances of η 
  ln(∙) natural logarithm 
  𝑁𝑁(∙) normal distribution 

1. INTRODUCTION 
To achieve carbon neutrality, it is crucial to reduce 

the energy consumption of cities, as a significant portion 
of urban energy consumption is attributed to buildings. 

 
# This is a paper for the 16th International Conference on Applied Energy (ICAE2024), Sep. 1-5, 2024, Niigata, Japan. 

For buildings to become carbon neutral, it is first 
essential to understand the energy consumption of 
individual buildings. However, this is not an easy task. 

In Japan, due to legal revisions, private companies 
other than power utilities will be able to utilize smart 
meter electricity data starting in October 2023. This will 
allow the use of electricity consumption data at 30-
minute intervals. However, due to privacy protection, 
the electricity usage of individual buildings cannot be 
used, and it is generally available as aggregate values by 
municipality or grid area. 

On the other hand, with the recent widely spread of 
smartphones, it has become possible to use people flow 
data with latitude and longitude information. Electricity 
consumption in buildings is related to human 
movements[1–4]. Its observation or getting data, 
however, is usually difficult due to the building security. 
If it is possible to estimate the population in buildings 
from widely available GPS data, it will be strongly useful 
to determine the schedule in buildings, and thereby to 
estimate the energy consumption more accurately.  

Therefore, this study aims to clarify the relationship 
between people flow and building energy consumption 
during the summer, a period of high energy usage, using 
an office building in Tokyo as a case study. 

2. MATERIAL AND METHODS  

2.1 Characteristics of the target building 

We focused on the company's own building located in 
Chiyoda, Tokyo (Table.1). This building was chosen 
because it has a Building Energy Management System 
(BEMS) installed, allowing us to obtain detailed data on 
energy consumption by different uses within the 
building. 

HVAC is crucial for the building's energy consumption. 
This building uses ice thermal storage for cooling. The ice 
thermal storage system makes ice at night using 
electricity and uses this ice for cooling during the day. 
Therefore, the people flow data does not directly 
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correlate with the power data for HVAC. Instead, we 
analyzed the relationship with the heat load for HVAC. In 
buildings with typical electric heat sources that do not 
use thermal storage, there is a strong correlation 
between heat load and power consumption of HVAC. 

In addition to the heat load, we analyzed the power 
consumption of (a)outlets, (b)lighting, (c)water supply 
and drainage pumps, and (d)air conditioning fans. It 
should be noted that the water supply and drainage 
pumps are mainly used for facilities such as toilets and 
do not include pumps related to HVAC. 
 
Table. 1 Building information 

Total floor area 20,581 m2 
Building use Office 
Completion year 2003 
Building area 1498 m2 
Address Chiyoda-ku, Tokyo 
Story Above ground: 14, below ground: 1 
Heat storage system 
for HVAC Ice heat storage system 
Heat source for 
HVAC 

Absorption water cooling/heating machine 
Brine heat pump (air source) 

Lighting Fluorescent light (high frequency) 
Company cafeteria Not exist 

 

2.2 Data 

We analyzed the summer period from August 7, 2018, 
to September 3, 2018. All data used in the analysis are at 
one-hour intervals. 
2.2.1 Weather data 

We used the nearest weather data from the Japan 
Meteorological Agency's automatic weather station 
(AMeDAS). During the period, the average air 
temperature was 27.2 °C, the maximum temperature 
was 35.4 °C, and the minimum temperature was 18.7 °C 
(Fig. 1). 
2.2.2 People in the building data 

We used GPS data to capture the number of people in 
the building. The GPS data were collected as point-type 
floating data (Blogwatcher, Inc., 2018). Blogwatcher 
obtained smartphone location data from users who 
downloaded applications signed and consented to their 
terns of use with Blogwatcher. The collected data were 
anonymized, and no information was recorded during 
overnight hours. The users’ IDs were randomized every 
morning to secure privacy. Therefore, we can capture 
trajectories and destinations of the users in a day. 

To capture the number of people in the building by 
hour, we counted the number of users whose 
trajectories were contained within the 7.5 m buffer of 
the building(Fig. 2). 

 
 

 

 
 Fig. 2 The number of people in the building 

 
2.2.3 Building energy consumption data 

The heat load data and power consumption data by 
different uses in the target building are shown in Fig.3 
to 7. These data are used as dependent variables. 
 
 

 
Fig. 3 Heat load 

 

 
Fig. 1 Outside air temperature 
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 Fig. 4 Outlet power consumption 

 

 
Fig. 5 Lighting power consumption 

 

 
Fig. 6 Water supply and drainage pump power 

consumption 

 
Fig. 7 HVAC fan power consumption 

 

2.3 Statistical model 

Since the heat load and power consumption are time 
series data at one-hour intervals, we used a state-space 
model to appropriately represent the time series. The 
advantages of the state-space model include the ability 
to separate state variations (such as changes in the level 
of power consumption) from observational errors, high 
flexibility in modeling, including extensions to non-linear 
models, and ease of handling missing observations. 

In this study, we used the local level model, a type of 
state-space model, with people flow data and 
temperature data set as time-invariant regression 
components. Temperature was used as a control variable 
because it significantly affects building energy 
consumption, especially HVAC. 

We compared statistical models targeting heat load. 
The observation equations compared are shown in 
Equations (1-1) to (1-6). 

 
ln(𝑦𝑦𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝑥𝑥1𝑡𝑡 + 𝛽𝛽2𝑥𝑥2𝑡𝑡 + 𝜀𝜀𝑡𝑡 , (1-1) 
ln(𝑦𝑦𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝑥𝑥1𝑡𝑡 + 𝛽𝛽3 ln(𝑥𝑥2𝑡𝑡) + 𝜀𝜀𝑡𝑡 , (1-2) 
ln(𝑦𝑦𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝑥𝑥1𝑡𝑡 + 𝛽𝛽3ln (𝑥𝑥2𝑡𝑡)

+ 𝛽𝛽4𝐷𝐷1𝑡𝑡ln (𝑥𝑥2𝑡𝑡) + 𝜀𝜀𝑡𝑡 
(1-3) 

ln(𝑦𝑦𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝑥𝑥1𝑡𝑡 + 𝛽𝛽3ln (𝑥𝑥2𝑡𝑡)
+ 𝛽𝛽5𝐷𝐷2𝑡𝑡ln (𝑥𝑥2𝑡𝑡) + 𝜀𝜀𝑡𝑡 , 

(1-4) 

ln(𝑦𝑦𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝑥𝑥1𝑡𝑡 + 𝛽𝛽3ln (𝑥𝑥2𝑡𝑡)
+ 𝛽𝛽4𝐷𝐷1𝑡𝑡ln (𝑥𝑥2𝑡𝑡)
+ 𝛽𝛽5𝐷𝐷2𝑡𝑡ln (𝑥𝑥2𝑡𝑡) + 𝜀𝜀𝑡𝑡 ,   

(1-5) 

ln(𝑦𝑦𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝛽𝛽1𝑥𝑥1𝑡𝑡 + 𝛽𝛽3ln (𝑥𝑥2𝑡𝑡)
+ 𝛽𝛽6𝑥𝑥1𝑡𝑡ln (𝑥𝑥2𝑡𝑡) + 𝜀𝜀𝑡𝑡 ,   

(1-6) 

Where 𝜀𝜀𝑡𝑡~𝑁𝑁(0,𝐻𝐻𝑡𝑡) , 𝑦𝑦 : Heat load for air 
conditioning, 𝑥𝑥1:outside air temperature, 𝑥𝑥2:people 
in the building, 𝐷𝐷1:Outside air temperature is 26 °C or 
higher Dummy, 𝐷𝐷2:Outside air temperature is 30 °C 
or higher Dummy,  

 
In Equations (1-4) to (1-6), cross terms with dummy 

variables were introduced to account for the possibility 
that the impact of people flow on energy consumption 
might differ between high and low temperatures. 

the common state equation for all models is shown 
below. The initial state was initialized using a diffuse 
prior. 

 
𝛼𝛼𝑡𝑡+1 = 𝛼𝛼𝑡𝑡 + 𝜂𝜂𝑡𝑡 , 𝑡𝑡 = 1, … , 671 (2) 
Where 𝜂𝜂𝑡𝑡~𝑁𝑁(0,𝑄𝑄𝑡𝑡)  

 
We used the best model from the heat load model 

comparison for outlets, lighting, water supply and 
drainage pumps, and air conditioning fans. Calculations 
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were performed using the R package KFAS (version 1.5.1) 
[5–6]. Since we applied logarithmic transformation, 
variables containing zeros had a small constant added to 
the entire variable (0.01 GJ/h for heat load, 0.1 people 
for people flow, and 0.1 kWh/h for other power 
consumption). Using a logarithmic model is convenient 
because the estimated β can be applied regardless of 
building size. For example, in the log-log model (1-2), a 
1% increase in the number of people would result in 𝛽𝛽% 
increase in 𝑦𝑦. 

3. RESULTS 
The parameter estimation of the model comparison 

using cooling heat load as the dependent variable are 
shown in Table 2. As an evaluation metric, we display the 
RMSE of the one-step ahead prediction error and the 
maximum log-likelihood. RMSE is calculated for t = 3, ..., 
671, excluding the initial state where errors are very 
large due to diffuse initialization. The model with the 
smallest RMSE and largest maximum log-likelihood is 
Model (2). The smoothed state of Model (2) is shown in 
Fig. 8. 

Using the independent variables of Model (2), the 
parameter estimation for models with outlets, lighting, 
water supply and drainage pumps, and air conditioning 
fans as dependent variables are shown in Table 3. As a 
representative example, the smoothed state for outlets 
is shown in Fig. 9. 

4. DISCUSSION 

4.1 The impact of people flow on heat load and energy 
consumption 

We used a state-space model to explain the 
relationship between energy consumption and people 
flow in the office building in Tokyo during the summer. 
We used temperature and people flow as time-invariant 
regression components. Initially, we compared statistical 
models based on log-transformed heat load, exploring 
log-transformed terms cross terms in the explanatory 
variables. As a result, Model (2), which included log-
transformed people flow and did not include cross terms, 
achieved the highest Maximum log-likelihood and was 
considered the best model. While there was a tendency 
for the impact of people flow to decrease as temperature 
down, the results were not statistically significant (in 
Models (4) and (5), the β of the dummy variable 
representing temperature above 30 °C was estimated to 
be negative.). 

Using Model (2) for interpretation, it was observed 
that when people flow inside the building increased by 

1%, there was a tendency for the cooling heat load to 
increase by 0.114 ± 0.051% (mean ± S.E.). Additionally, it 
was observed that when temperature increased by 1 °C, 
there was a tendency for the cooling heat load increase 
by 25.2 ± 5.8%. 

Using the same independent variables as Model (2), 
we estimated (a)outlets, (b)lighting, (c)water supply and 
drainage pump, and (d)air conditioning fans. It was 
estimated that when people flow increased by 1%, there 
was a tendency for outlets to increase by 0.020 ± 0.005%, 
Lighting by 0.032 ± 0.010%, Water supply and drainage 
pump by 0.236 ± 0.024%, and Air conditioning fans by 
0.218 ± 0.032%. 

The elasticity of people flow was found to be largest 
for water supply and drainage pump, due to the direct 
relationship between water usage, such as toilet 
facilities, and the number of occupants in the building. 
Additionally, air conditioning fans showed second largest 
elasticity, possibly because the building incorporates CO2 
control for ventilation, adjusting the ventilation volume 
according to the number of occupants present. Cooling 
heat load not only deals with heat load generated from 
occupants but also needs to handle heat load from the 
building envelope unrelated to occupancy, which explain 
why the elasticity is relatively small. Furthermore, the 
majority of this building's office areas feature open-plan 
layouts without walls, leading to a tendency to turn on 
lighting for an entire floor when even one person is 
present, resulting in relatively lower correlation with 
people flow. Lastly, outlets, which are associated with 
individual activities such as charging personal laptops, 
exhibited lowest elasticity due to the presence of many 
appliances, such as internal network servers, 
refrigerators, which operate independently of human 
occupancy. 

4.2 Limitation 

In this study, we used data based on smartphone 
location information as people flow data. It’s important 
to note that we don’t capture 100% of people inside the 
building. Additionally, there’s a possibility that people 
walking near the building, such as on sidewalks, are also 
included in the data. A rough estimate based on 
company’s attendance records etc. suggests that this 
data captures around 30 to 50 percent of office-workers 
in the building. However, our statistical model estimates 
elasticity, so if the capture rate remains constant 
throughout the period, the impact of capture rate on 
elasticity is likely small. 

This study specifically focuses on the summer period. 
Winter or intermediate periods may be different 
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behaviors, so accumulating data over the entire year will 
allow us to assess long-term effects. 

Due to data constraints, our study examined a single 
office building located in Tokyo. To improve external 
validity, we plan to expand our analysis to include other 
buildings in the future. 

Notable energy consumption we couldn’t address in 
this study is elevators. Elevators consumed up to 30 
kWh/h during the study period. Unfortunately, the 
coarse pulse detection of elevator power meters (with a 
minimum detectable amount of 10 kWh/h) prevented us 
from including them in our estimation. 

5. CONCLUSIONS 
In this study, we investigated the relationship between 

energy consumption by major end-uses in a office 
building in Tokyo and people flow during the summer. 
Using state-space model and controlling for outside air 
temperature, we estimated that a 1% increase in people 
flow in the building led to the following trends in heat 
load or energy consumption: cooling heat load increased 
by 0.114±0.051%(mean ± S.E.), outlets by 0.020±0.005%, 
lighting by 0.032±0.010%, water supply and drainage 
pump by 0.236±0.024%, and air conditioning fans by 
0.218±0.032%. These findings contribute valuable 
insights for spatial downscaling to accurately monitor 
energy consumption dynamics in individual buildings 
when electricity data from smart meter utilization 
becomes more widespread. 
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Table. 2 Parameter estimation results (heat load model)  
Dependent variable: ln(heat load for air conditioning) (1) (2) (3) (4) (5) (6) 
Outside air temperature 0.226* 0.252* 0.238* 0.306* 0.292* 0.359* 

(Standard error)  (0.061) (0.058) (0.062) (0.068) (0.071) (0.084) 
People in the building 0.007*      
 (Standard error) (0.003)      
ln(People in the building)  0.114* 0.085 0.123* 0.097 0.914* 

(Standard error)  (0.051) (0.066) (0.051) (0.066) (0.465) 
Outside air temperature is 26 °C or higher Dummy × ln(People in the building)   0.051  0.046  
 (Standard error)   (0.075)  (0.075)  
Outside air temperature is 30 °C or higher Dummy × ln(People in the building)    -0.120 -0.117  
 (Standard error)    (0.080) (0.080)  
Outside Air temperature × ln(People in the building)      -0.030 

(Standard error)      (0.018) 
RMSE 1.72 1.90 1.91 1.90 1.91 3.01 
exp(RMSE) 5.57 6.69 6.75 6.69 6.74 20.31 
Maximum log-likelihood -1304.8 -1302.6 -1305.0 -1304.0 -1306.4 -1305.2 
R2 (squared correlation coefficient between dependent variable and smoothed state) 0.88 0.88 0.88 0.88 0.88 0.88 

*The 95% confidence interval does not include zero. 
 
Table.3 Parameter estimation results. (other model) 

 Dependent variable: 

 (a) ln(Outlet) (b) ln(Lighting) 
(c) ln(Water supply 
and drainage pump) 

(d) ln(Air 
conditioning fans) 

Outside air temperature 
(Standard error) 

0.051* 0.100* 0.132* 0.205* 
(0.006) (0.014) (0.023) (0.023) 

ln(People in the building) 
 (Standard error) 

0.020* 0.032* 0.236* 0.218* 
(0.005) (0.010) (0.024) (0.032) 

RMSE 0.19 0.41 0.91 1.92 
exp(RMSE) 1.21 1.51 2.47 6.83 
Maximum log-likelihood 205.2 -223.8 -889.2 -1112.9 
R2(squared correlation coefficient between dependent 
variable and smoothed state) 

0.96 0.99 0.56 0.38 

*The 95% confidence interval does not include zero. 
 

 
 
 

 
Fig. 8 Smoothed state of heat load mode (2). Line: Smoothed state, Dot: observed value, Shadow: 95% prediction 

interval 
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Fig. 9 Smoothed state of outlet mode. Line: Smoothed state, Dot: observed value, Shadow: 95% prediction interval 
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