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ABSTRACT 
 Autoencoders (AEs) are widely used in industrial gas 
turbines for fault diagnosis. However, traditional AEs 
often perform poorly with limited training data, causing 
frequent false alarms. Insufficient data can cause a 
mismatch between the model and the actual system, 
especially under operational conditions absent from the 
training samples. This paper introduces a novel multi-
fidelity autoencoder (MFAE) model that integrates 
limited high-fidelity operational data with abundant low-
fidelity simulation data. The MFAE model learns latent 
features from a pre-trained low-fidelity AE model and 
establishes correlations between low- and high-fidelity 
data via linear and nonlinear networks. The effectiveness 
of the proposed methods is evaluated on an industrial 
gas turbine unit. MFAE effectively captures essential 
process characteristics and adapts to various operating 
conditions with limited operational data, enabling 
accurate gas turbine monitoring. 
Keywords: gas turbine, multi-fidelity data, fault 
diagnosis, process monitoring, autoencoder 

NONMENCLATURE 
Abbreviations  
 AE Autoencoder 
 HFAE High-fidelity autoencoder 
 MFAE Muti-fidelity autoencoder 
 PINN Physics-informed neural network 
 SPE Squared prediction error 

1. INTRODUCTION 
Gas turbines, operating on the Brayton cycle, are 

crucial components in power generation systems. 
Effective process monitoring and early fault detection 
are vital for improving gas turbine safety, reliability, and 
efficiency[1]. The power industry's rapid digitalization has 
produced extensive real-time and historical data, 
enabling the development of data-driven monitoring and 
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fault diagnosis methods[2]. These data-driven methods 
extract intrinsic correlations among process parameters 
from historical data, reducing the need for extensive 
prior knowledge[3]. 

Data-driven methods are widely adopted for process 
monitoring and fault diagnosis[4]. Gas turbines, however, 
exhibit complex nonlinear behavior due to their inherent 
process characteristics. Traditional statistical methods 
often fail to adequately capture these nonlinearities[5]. 
Autoencoders (AEs) have gained popularity due to their 
powerful nonlinear feature extraction capabilities[6]. AEs 
compress input data into a latent space via an encoder 
and reconstruct it using a decoder. Despite their 
potential, AEs require substantial training data, which is 
often lacking for new or modified gas turbine systems. 
Furthermore, when operating conditions change, AE 
models may fail to capture process characteristics 
accurately due to insufficient training samples for new 
operational modes. 

Recent advancements, such as transfer learning[7], 
meta-learning[8], and data augmentation[9], have been 
proposed to address the challenges posed by small 
sample sizes. Additionally, physics-informed neural 
networks (PINNs) offer a new perspective by combining 
first principles and data-driven modeling [10]. However, 
for complex systems like gas turbines with incompletely 
understood mechanisms, PINNs may suffer from 
misspecified physical equations, resulting in suboptimal 
predictions [11]. 

Multi-fidelity modeling (MFM) integrates first 
principles and data-driven approaches by combining 
abundant, low-cost, low-fidelity simulation data with 
limited high-fidelity operational data [12]. Unlike PINNs, 
MFM uses data to characterize first principles instead of 
relying on explicit mathematical equations. In the MFM 
framework, low-fidelity simulation data represent first 
principles, which are then fused with high-fidelity 
operational data using various methods[13, 14]. Although 

Energy Proceedings
Vol 50, 2025

ISSN 2004-2965



2 

less accurate than operational data, simulation data 
provide information about the system's behavior under 
different conditions, capturing the underlying physical 
principles governing the gas turbine's operation. By 
leveraging low-fidelity data with the limited high-fidelity 
operational data, MFM techniques can construct more 
robust and generalizable models adaptable to diverse 
operating conditions. 

While MFM has demonstrated significant potential 
in various fields [14, 15], its application to industrial process 
monitoring and fault diagnosis, especially for gas 
turbines, remains largely unexplored. This study offers 
the following key contributions:  

(1) Development of a novel multi-fidelity 
autoencoder (MFAE) framework for fault monitoring, 
integrating limited high-fidelity operational data with 
abundant low-fidelity simulation data to improve 
process monitoring and fault diagnosis. 

(2) Implementation of coupled parallel linear and 
nonlinear networks to identify and utilize correlations 
between low- and high-fidelity data, enabling accurate 
representation of high-fidelity process characteristics 
with limited operational data. 

(3) Validation of the MFAE framework's 
effectiveness through a case study on an industrial gas 
turbine unit, demonstrating its superior performance 
over traditional single-fidelity 

2. MATERIAL AND METHODS 

2.1 The basic autoencoder 

An AE typically consists of an encoder and a decoder. 
Given a training dataset 𝑿 = [𝒙("), 𝒙($), … , 𝒙(%)]& 	 ∈
ℝ%×( with 𝑁 samples and 𝑛 variables, where 𝒙()) =
-𝑥"

()), 𝑥$
()), … , 𝑥(

())/ ∈ ℝ( , (1 ≤ 𝑖 ≤ 𝑁 ). The input 
variable 𝒙  is projected into an 𝑙 -dimensional latent 
spac through 𝑚 encoding layers: 

𝒉* = 𝑓*+(,(𝒉*-"+(, ) = 𝑓*+(,(𝑓*-"+(, (⋯𝑓"+(,(𝒙))) (1) 

with 

𝑓)+(,(𝒙) = 𝜎(𝑾)
+(,𝒙 + 𝒃)+(,), 1 ≤ 𝑖 ≤ 𝑚 (2) 

where 𝒉* ∈ ℝ.  is the latent variable, 𝑓/+(,(∙) 
represents the function of the 𝑖 -th encoding layer, 
𝒉*-"+(,  is the output of the (𝑚 − 1)-th encoding layer, 
𝑾)

+(, ∈ ℝ0!×(  and 𝒃)+(, ∈ ℝ0!  are the weight matrix 
and bias vector of the 𝑖-th encoding layer, ℎ)  denotes 
the number of neurons, 𝜎(𝜏) = max(0, 𝜏)  is the 
rectified linear unit (ReLU) function.  

The decoder then transforms the latent variables 
back to the original space: 

𝒙G = 𝑓"1+,H𝑓$1+,(⋯𝜎H𝑾*
1+,𝒉* + 𝒃*1+,I)I (3) 

with 

𝑓)1+,(𝒙) = 𝜎H𝑾)
1+,𝒙 + 𝒃)1+,I, 1 ≤ 𝑖 ≤ 𝑚 (4) 

where 𝒙G  is the AE output variable. 𝑓)1+,  represents 
the function of the 𝑖-th decoding layer, 𝑾)

1+, ∈ ℝ0!×.  
and 𝒃)1+, ∈ ℝ0!  are the weight matrix and bias vector 
of the 𝑖-th decoding layer, respectively. 

The AE training objective is to minimize the 
reconstruction error, which can be formulated as: 

argmin
𝑾!
"#$,𝒃!

"#$,𝑾!
%"$,𝒃!

%"$,"5)5*
‖𝒙 − 𝒙G‖$ (5) 

where ‖⋅‖$ represents the L2 norms. 

2.2 Multi-fidelity autoencoder, MFAE 

The MFAE model extends the basic AE framework by 
leveraging both low- and high-fidelity data to enhance 
process monitoring and fault diagnosis. Let 𝒙6 
represents the limited high-fidelity data accurately 
depicting the process, and 𝒙7 represents the abundant 
low-fidelity data capturing essential process 
characteristics. The MFAE model is built upon a pre-
trained low-fidelity AE model and learns the correlations 
between low- and high-fidelity data. The MFAE 
framework is concisely expressed as: 

𝒙G6 = ℱ(𝒉6, 𝒙T6) = ℱ(𝑓7+(,(𝒙6), 𝐴𝐸7(𝒙6; 𝜣7)) (6) 

where 𝒙G6 and 𝒙T6 denote the MFAE outputs and low-
fidelity AE outputs for high-fidelity data 𝒙6 , 
respectively. ℱ(∙)  is an unknown mapping function 
relating low-fidelity features to high-fidelity data. 𝒉6 
denotes the latent space representation of high-fidelity 
data 𝒙6  obtained from the low-fidelity AE encoder 
𝑓7+(,(∙) . 𝐴𝐸7(∙; 𝜣7)  represents the pre-trained low-
fidelity AE model with parameters 𝜣7  capturing low-
fidelity features.  

The correlation function ℱ(∙) is decomposed into 
linear and nonlinear components: 

ℱ = 𝛼ℱ. + (1 − 𝛼)ℱ(. (7) 

where 𝛼  is a hyperparameter that balances the 
contributions of linear and nonlinear functions. ℱ.  and 
ℱ(.  represent the linear and the nonlinear correlation 
functions, respectively. 

Consequently, Eq. (6) can be rewritten as: 

𝒙G6 = ℱ(𝒙6) = 𝛼ℱ.(𝒉6, 𝒙T6) + (1 − 𝛼)ℱ(.(𝒉6, 𝒙T6) (8) 
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Fig. 2 Schematic diagram of the MFAE framework 

MFAE learns linear and nonlinear correlations 
through two neural networks, with the overall structure 
illustrated in Fig. 2. The MFAE architecture comprises 
three sub-networks: a low-fidelity AE network (𝐴𝐸7) for 
feature extraction, and two NN networks (𝑁𝑁6&  and 
𝑁𝑁6' ) for learning linear and nonlinear correlations, 
respectively. 𝑁𝑁6&  is a linear neural network without 
activation functions, while 𝑁𝑁6'  is a nonlinear neural 
network using the ReLU activation function. The outputs 
of 𝑁𝑁6&  and 𝑁𝑁6'  are weighted by hyperparameter 
𝛼 and summed to yield the final MFAE outputs 𝒙G6. The 
overall MFAE framework is summarized as: 

𝒙T6 = 𝐴𝐸7(𝒙6; 𝜣7) (9) 

𝒉6 = 𝑓7+(,(𝒙6) (10) 

𝒙G6 = 𝛼𝑁𝑁6&H𝒉6, 𝒙T6; 𝜣6&I + (1 − 𝛼)𝑁𝑁6'H𝒉6, 𝒙T6; 𝜣6'I
(11)

 

where 𝜣6&  and 𝜣6'  represent the model parameters 
of 𝑁𝑁6&  and 𝑁𝑁6', respectively. 

The MFAE training process involves two steps. First, 
the low-fidelity AE model 𝐴𝐸7 is pre-trained using low-
fidelity data 𝒙6 , as outlined in Section 2.1. The loss 
function of 𝐴𝐸7 is defined as: 

ℒ7 = ‖𝒙7 − 𝒙T7‖$ + 𝜆8,7‖𝜣7‖$ (12) 

where ℒ7  represents the total loss of 𝐴𝐸7 . 𝒙T7 
denotes the reconstructed low-fidelity data obtained 
from 𝐴𝐸7 , and 𝒙7  is the input low-fidelity data. The 
second term represent the L$  regularization loss of 
model parameters 𝜣7, used to mitigate overfitting. The 
hyperparameter 𝜆8,7  controls the weight of the 
regularization term. 

Second, the linear and nonlinear networks 𝑁𝑁6&  
and 𝑁𝑁6'  are trained to learn correlations. It is worth 
noting that the network parameters of the pre-trained 

𝐴𝐸7  are transferred and frozen during this stage. The 
loss function of the MFAE framework is defined as: 

ℒ9 = ‖𝒙6 − 𝒙G6‖$ + 𝜆8,6(a𝜣6&a
$
+ a𝜣6'a

$
) (13) 

where ℒ9  represents the total loss of the MFAE 
framework, and 𝜆8,6 is a hyperparameter that balances 
the trade-off between regularization and regression 
losses. 

The BP algorithm is utilized to optimize the network 
parameters in the above steps. 

2.3 Fault diagnosis framework of MFAE 

The Squared Prediction Error (SPE) statistic serves as 
the monitoring metric to capture the MFAE model's 
residual space. Fault diagnosis using the MFAE 
framework comprises two main stages: offline modeling 
and online fault monitoring. Algorithm 1 outlines the 
detailed steps. 

Algorithm 1. fault diagnosis procedure by the MFAE 
Step 1: Offline modeling: collect and initialize the low-
fidelity dataset and the high-fidelity dataset. 
Step 2: Develop a MFAE model in two steps, as described in 
Section. 2.2, and obtain the confidence limit 𝛿!". 
Step 3: Online monitoring: collect a new sample 𝒙. 
Step 4: calculate the𝑆𝑃𝐸 . If 𝑆𝑃𝐸 > 𝛿!" , the process is 
considered abnormal. If 𝑆𝑃𝐸 < 𝛿!" , the process is in a 
normal state, and return to Step 2 until 𝑆𝑃𝐸 > 𝛿!".  
Step 5: End of the algorithm. 

3. RESULTS AND DISCUSSION 

3.1 Model development 

This section applies the proposed MFAE to monitor a 
single-shaft gas turbine in a natural gas combined cycle 
(NGCC) power plant. The MFAE model for the target gas 
turbine is developed using two data sources. The first is 
a low-fidelity dataset generated from a simulated model 
based on Advanced Process Simulator (APROS) software, 
covering a broad range of operating conditions. 

Table 1 Selected variables and datasets for establishing 
monitoring models of the gas turbine 

Variable Operating data 
ranges  

Simulated data 
ranges  

Unit 

Generator power 95.1-105.2 10.4-152.87 MW 
Ambient temperature 9.1-19 -20-40 ℃ 
Compressor outlet 
temperature 

316.2-333.9 231.1-379.6 ℃ 

Compressor outlet 
pressure 

13.48,14.49 6.001-14.29 bar 

Turbine inlet 
temperature 

1083.8-1105.2 720.5-1136.3 ℃ 

Turbine outlet 
temperature 

545.8-563.1 409.9-593.5 ℃ 
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The second is a high-fidelity dataset collected from 
the supervisory information system (SIS) of an NGCC 
power plant. This high-fidelity dataset comprises 1440 
samples collected over one day at one-minute intervals, 
which may not capture the full range of operating 
dynamics. Additionally, 4,320 samples, collected over 
three days, were designated as the test dataset. Data 
normalization was performed to ensure all variables 
were on a comparable scale. Table 1 presents the details 
of the selected variables, including temperatures and 
pressures associated with operational safety[1]. 

Two models are developed: (1) a high-fidelity 
autoencoder (HFAE) based on the high-fidelity dataset; 
(2) a multi-fidelity autoencoder (MFAE) utilizing both 
low- and high-fidelity datasets. The MFAE architecture 
combines an autoencoder (AE) with both linear and 
nonlinear neural networks. The AE component features 
a symmetrical structure: six input and output neurons 
corresponding to operating parameters, a two-
dimensional latent space, and three hidden layers with 
20, 10, and 5 neurons respectively. Within the MFAE 
model, both linear and nonlinear neural networks 
employ a structure comprising a 9-neuron input layer, 
two hidden layers (10 and 20 neurons), and a 6-neuron 
output layer. To ensure a fair comparison, the HFAE 
model adopts the same framework as the AE in the MFAE 
model. All neural networks, except the linear network, 
use the rectified linear unit (ReLU) as the activation 
function. Network structures are optimized using 
Optuna, a hyperparameter optimization framework. 

3.2 Monitoring performance analysis and comparison 

Figure 3 illustrates the monitoring metrics for both 
HFAE and MFAE models. Both models exhibited excellent 
monitoring capabilities on the training dataset, achieving 
SPE values near zero. However, significant performance 
disparities emerged when applied to the test dataset. 
The MFAE model maintained consistently low and stable 
SPE values throughout the testing phase. In contrast, the 
HFAE model displayed significant SPE fluctuations during 
the testing phase. 

 
Fig. 3 Monitoring metrics for different models 

Fig. 4 compares the measured and predicted values 
of the monitored operating parameters for the MFAE 
model. The normal operating ranges in the figure are 
established based on the outputs of the monitoring 
model. Measured values exceeding these intervals 
during normal operation trigger a false alarm, indicating 
suboptimal model monitoring performance. Figure 4 
shows that measured values consistently fall within the 
normal operating ranges of the MFAE, demonstrating 
effective process dynamics monitoring without false 
alarms. 

Fig. 5 reveals that the measured values notably 
deviated from the predicted values in the test dataset, 
consistent with the SPE analysis. These deviations 
suggest that the HFAE model fails to capture the normal 
operating ranges for most variables, resulting in frequent 
false alarms. Consequently, the HFAE model struggles to 
adapt to the process with wide operating ranges. The 
limited high-fidelity training data hinders the model's 
generalization ability, leading to poor monitoring 
performance. 

 
Fig. 4 Comparison of predicted and measured values for the 

MFAE Model 

3.3 Monitoring performance analysis and comparison 
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In real-world gas turbine operations, abnormal 
turbine outlet temperature is a common fault, typically 
caused by decreased heat exchange efficiency or 
incomplete combustion[1]. This temperature anomaly 
may present as either sudden shifts or gradual changes. 
A continuous subset of the test dataset was selected as 
the fault samples to evaluate the performance of the 
MFAE monitoring model. The control limit for the SPE 
was established based on the 5,760 pieces of operating 
data, ensuring a comprehensive assessment of the 
model's fault detection capabilities under practical 
operating condition. 

 
Fig. 5 Comparison of predicted and measured values for the 

HFAE Model  

In fault case 1, we simulated a 10°C step increase 
between samples 2000 and 3000. Figure 6 shows that the 
MFAE model's SPE exhibited a sudden increase, 
exceeding the control limit and remaining anomalous 
throughout the affected sample range. This rapid 
response to the abrupt temperature change 
demonstrates the model's ability to swiftly detect and 
react to sudden faults. Case 2, in contrast, introduced a 
more subtle 0.015°C linear increase over the same 
sample range. Figure 7 illustrates that despite the 

gradual nature of this anomaly, the MFAE model's SPE 
rapidly exceeded the control limit and continued to rise 
sharply, demonstrating its high sensitivity to minor 
temperature deviations. These results showcase the 
MFAE model's robust capability to promptly detect both 
abrupt and subtle faults, establishing it as an effective 
tool for early fault warning in gas turbine systems. 

 
Fig. 6 Monitoring metrics of the MFAE model for fault case 1 

 
Fig. 7 Monitoring metrics of the MFAE model for fault case 2 

4. CONCLUSIONS 
In this study, a novel MFAE model was developed for 

nonlinear process monitoring and fault diagnosis. The 
MFAE framework extracts latent features from low-
fidelity data through the AE structure and learns their 
correlations with high-fidelity features through the linear 
and nonlinear networks. This hierarchical network 
structure enables the MFAE to leverage abundant low-
fidelity data for improved feature extraction while 
requiring only limited high-fidelity samples to calibrate 
the model, effectively ensuring its accuracy and 
robustness. The industrial case study highlights the 
MFAE's superior performance compared to single-
fidelity models in process monitoring and early fault 
warning. 

Future research directions include exploring fault 
isolation techniques within the MFAE framework, 
investigating the incorporation of prior physical 
knowledge, and developing adaptive strategies for 
online model updating as new high-fidelity data becomes 
available. These advancements have the potential to 
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extend the MFAE's applicability across diverse industrial 
domains, enhancing process monitoring capabilities in 
complex, data-constrained environments. 
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