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ABSTRACT 
 The efficient operation of Integrated Energy Systems 
(IES), which combine electricity, heat, and cooling, is 
challenged by the low predictability inherent in 
renewable energy sources like wind and solar power. 
Traditional scheduling methods, relying on day-ahead 
and intra-day forecasts, often fail to accommodate the 
deviations between forecasted and actual energy 
generation, leading to suboptimal performance and 
increased operational costs. This paper proposes an 
enhanced scheduling method that incorporates multiple 
scenarios outside the probabilistic prediction intervals to 
address forecast deviations. By calculating optimal 
scheduling schemes for these extra scenarios, the 
proposed method ensures that IES can adapt 
dynamically to real-time conditions, maintaining closer 
proximity to the optimal operating point. Simulation 
results using real power grid data from Belgium 
demonstrate that this method significantly reduces 
system costs compared to traditional scheduling 
approaches, effectively mitigating the economic impact 
of forecast inaccuracies. The study highlights the 
potential of scenario-based scheduling in improving the 
reliability and efficiency of IES under uncertainty. 
 
Keywords: Integrated Energy Systems, Renewable 
Energy, Forecast Deviations, Scenario-based Scheduling, 
Stochastic Model Predictive Control, Operational 
Efficiency 

NONMENCLATURE 
Abbreviations  
IES integrated energy system 
SMPC stochastic model predictive control 
PV photovoltaic 
WT wind turbine 
MGT micro gas turbine 
BA battery 

                                                           
# This is a paper for the 16th International Conference on Applied Energy (ICAE2024), Sep. 1-5, 2024, Niigata, Japan. 

ACH absorption chiller 
EB electric boiler 
EC electric chiller 
HP heat pump 
HT heat tank 
CT cold tank 
LD load 
  
Symbols  
t time (h) 
s scenario 
K number of total scenarios 
N total time 
C cost 
η efficiency 
P probability 

1. INTRODUCTION 
The Integrated Energy System (IES) is a novel energy 

system that achieves efficient conversion and optimal 
utilization of energy by organically combining various 
energy forms such as electricity, heat, and cooling. Its 
core function relies on comprehensive scheduling and 
coordinated control to achieve the complementarity and 
synergy of multiple energy forms, thereby enhancing the 
overall system's operational efficiency and the ability to 
absorb renewable energy. However, renewable energy, 
particularly wind and solar power, exhibits significant 
randomness and intermittency. These characteristics 
pose substantial challenges to the stable operation of 
IESs [1][2]. 

Therefore, to maintain the stable and efficient 
operation of the IES, it is essential to develop an 
appropriate scheduling method that fully utilizes the 
characteristics of renewable energy, balances supply and 
demand, and ensures reliable operation under 
conditions of uncertainty. 

Currently, the commonly used day-ahead and intra-
day scheduling are based on forecast data to calculate 
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the scheduling scheme. The scheduling layer issues 
operation instructions to each device based on the 
calculated optimal scheduling scheme, ensuring that the 
devices operate as closely as possible to the set 
scheduling instructions over the next period [3][4][5]. If 
the random variables in the system match the forecast, 
the scheme will be the optimal scheduling scheme in 
actual operation. However, due to the limitations of 
forecasting algorithms, there is often a deviation 
between the actual values and forecasted values of 
random variables in the IES. This deviation can cause the 
system to deviate from the optimal scheduling scheme 
during actual operation, leading to economic losses and 
potentially affecting system safety and stability. 

Current forecasting algorithms are extensively 
studied and have high accuracy for large systems [6][7]. 
However, as the system's capacity decreases, forecasting 
becomes more challenging. Some IESs fall into this 
category of small-capacity systems. For example, 
predicting solar irradiance over a large area is relatively 
easier and more accurate, but for IESs at the household 
or industrial park level, which cover smaller areas, there 
is a greater need for highly accurate small-scale 
forecasting data. Achieving high-precision wind and solar 
forecasts for small areas remains a challenge because 
localized phenomena such as simultaneous sunshine and 
precipitation can occur, presenting significant difficulties 
for photovoltaic forecasting [8][9]. 

Even with a certain level of accuracy, forecast 
deviations have a much more significant impact on IESs 
compared to traditional large power grids. In large power 
grids, deviations in photovoltaic generation in some 
regions can be tolerated due to the grid's vast capacity. 
However, some IESs are located in remote areas and 
cannot connect to these large power grids. Even those 
IESs that are connected to large power grids face 
capacity constraints on their energy interactions due to 
economic considerations. Therefore, IESs have a weaker 
ability to resist random disturbances. Minor forecast 
errors can substantially impact the system because its 
limited capacity prevents it from tolerating these errors. 

Currently, commonly used scheduling schemes, such 
as day-ahead and intra-day scheduling, assume that 
random variables remain constant within each time 
interval until the next scheduling period. These 
scheduling periods are generally 1 hour or 15 minutes. 
However, in reality, random variables do not stay fixed 
within this time frame, leading to deviations in the 
generation of photovoltaic and wind power from 
expectations. Meanwhile, other equipment continues to 
operate according to the previous scheduling scheme. To 

maintain energy conservation, the IES must have devices 
to manage these discrepancies. For off-grid IESs, 
batteries, heat storage tanks, and cooling storage tanks 
can absorb these fluctuations. For grid-connected IESs, 
the grid can also be used for absorption. However, 
because the system's storage capacity is limited, large 
deviations can impact the system's safe and stable 
operation.  

To address the issue of deviations caused by random 
disturbances in existing scheduling algorithms, which 
lead to the system operating away from the optimal 
operating point, this paper proposes a scheduling 
method that considers extra scenarios. First, the 
scheduling scheme is calculated based on the original 
probabilistic prediction interval. Then, multiple scenarios 
deviating from the original prediction interval are 
established outside this interval. Optimal scheduling 
schemes are calculated for each of these extra scenarios. 
During actual operation, if the random variables fall 
within the original probabilistic interval, the original 
scheduling scheme is used. However, if the random 
variables fall outside the probabilistic prediction interval 
due to forecast deviations, the pre-calculated scheduling 
values from the extra scenarios are used to replace the 
original scheme. This ensures that the system operates 
under the new scheduling scheme, thereby maximizing 
the likelihood of the system operating near the optimal 
operating point. 

2. PROBLEM STATEMENT AND DATA ANALYSIS 

2.1 Problem Statement 

The IES combines multiple forms of energy, such as 
cooling, heating, and electricity into a unified large 
system. Currently, renewable energy accounts for a high 
proportion of these systems. The stable operation of the 
system depends on the accuracy of predicting random 
variables. If there are deviations in the predictions, the 
system will continue to operate according to the 
previous scheduling scheme, inevitably leading to 
increased operating costs and potentially compromising 
the safety of system operations. 

Most of the existing literature focuses on algorithm 
development without addressing the issues encountered 
in actual operations. Even the most commonly used 
scheduling algorithms assume a predefined range for 
random variables, guaranteeing optimal performance 
only within this range. However, when random variables 
exceed the predicted probabilistic interval—a situation 
that does occur in actual operations—there is a lack of 
corresponding research in the literature. This is the focus 
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of this study: how to ensure the safe, economical, and 
efficient operation of the system when random variables 
exceed the predicted interval. 

2.2 Data Analysis 

To substantiate the premise of this paper, it is 
essential to understand the prediction deviations 
produced by existing forecasting algorithms in actual 
systems. Elia has published photovoltaic (PV) power 
generation forecast data and actual data for Belgium 
[10]. By analyzing this data, we can determine the 
deviations between the forecasted values and the actual 
values. A histogram depicting these deviations over a 
year is presented in Fig. 1. 

First, it is calculated that the average prediction 
deviation is 27.09%. The most frequent deviation range 
is 10%-30%, accounting for 39.04% of the data. 
Additionally, 31.68% of the prediction deviations fall 
within the 0-10% range, while deviations exceeding 50% 
account for 16.36%. These figures indicate that in actual 
power systems, deviations between forecasted and 
actual values are common due to the limitations of 
forecasting algorithms and data collection. 

Large power grids can accommodate substantial 
deviations. However, for IESs, the absorption capacity is 
limited. A 10% forecast error can lead to a decline in 
system economic efficiency, and more severe forecast 
errors could even cause system failure. This underscores 
the significance of our research. 

3. SYSTEM MODEL AND ALGORITHM CONSTRUCTION  

3.1 System Model 

The IES discussed in this paper comprises three 
major subsystems: electricity, heating, and cooling. The 
electric power system includes generation equipment, 
loads, and the grid, specifically photovoltaic panels, wind 
turbines, micro gas turbines, and batteries, all connected 
to the grid and electrical loads. The heating system 

consists of heat pumps, electric boilers, and heat loads. 
The cooling system includes electric chillers, absorption 
chillers, cold storage tanks, and cooling loads. Each 
device has its corresponding constraints, with their 
mathematical models described as follows: 

3.1.1 Photovoltaic Panels  
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3.1.2 Wind turbine  
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3.1.3 Micro Gas Turbine  
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3.1.4 Battery  
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3.1.5 Absorption Chiller  
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3.1.6 Electric Boiler and Chiller  
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3.1.7 Heat Pump  
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3.2 Algorithm Construction 

The optimization objective of this paper is to 
minimize the system cost. This includes the start-up and 
shut-down costs, maintenance costs of each device, and 
fuel costs for the micro gas turbine. The IES is connected 
to the power grid, allowing for the purchase and sale of 

 
Fig. 1 Histogram of Deviations between PV Power 

Generation Forecasts and Actual Values 
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electricity, but with power limitations. We use the 
Stochastic Model Predictive Control (SMPC) algorithm to 
construct the loss function. The system's loss function is 
expressed in an expectation form, as shown in Equation 
(9). 
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In addition, it is necessary to construct extra 
scenarios. For instance, considering photovoltaic (PV) 
power generation, the forecast interval for PV 
generation has upper and lower limits. Traditional SMPC 
algorithms only calculate the optimal scheduling values 
within this interval. In this paper, we divide the range 
from the forecast lower limit to zero into multiple 
intervals. Similarly, the range from the forecast upper 
limit to the maximum possible PV generation is divided 
into multiple intervals. During scheduling, it is assumed 
that the PV generation lies within each of these intervals, 
and the scheduling schemes for the different intervals 
are calculated separately. 

In actual operation, if the PV generation lies within 
the forecast interval, the equipment is scheduled 
according to the initial scheduling scheme. If the PV 
generation exceeds the forecast interval, the 
corresponding scheduling scheme is chosen based on the 
interval in which the actual PV generation falls. This 
approach is shown in Fig. 2. 

By incorporating these extra scenarios into the SMPC 
algorithm, the system can dynamically adjust its 
operation based on real-time conditions, ensuring that it 
remains close to the optimal operating point and 
enhancing its ability to handle prediction deviations. This 
method provides a more robust and flexible scheduling 

approach, accommodating the inherent uncertainties in 
renewable energy generation. 

4. SIMULATION RESULTS AND DISCUSSION  
The data used in this study is the real power grid data 

provided by Elia for Belgium. Since Elia's raw data 
represents the total power generation, it needs to be 
normalized and then multiplied by the rated power of 
the corresponding equipment in our system. In this 
simulation case, the power data for a specific day in 
Belgium was selected. On this day, there was a significant 
deviation between the forecasted and actual PV values, 
as shown in Fig.3. The data has been normalized. 

It is noteworthy that the power interaction between 
the IES and the grid is constrained, with a maximum 
interaction power of 10 kW, reflecting real-world 
conditions. In the electric subsystem, the grid is used to 
absorb fluctuations in renewable energy. In the thermal 
subsystem, thermal storage tanks are used to absorb 
fluctuations. In the cooling subsystem, cold storage tanks 
are used to absorb fluctuations. 

In Fig. 4, the scheduling situation of the IES is 
compared under the ideal condition, the traditional 
method, and the proposed method. The ideal condition 
is the case when PV generation matches the predicted 
value, meaning no prediction bias occurs. The traditional 
method refers to the case when PV generation differs 
from the predicted value, indicating a prediction bias. In 
the traditional method, a single scheduling plan 
generated by the SMPC algorithm is directly applied to 
system scheduling.  

In the ideal condition, the scheduling scheme tends 
to use the micro gas turbine (MGT) to provide the 
system's electricity. This is because the MGT's power 
generation cost is lower than that of the grid, and it can 
simultaneously produce electricity and heat, reducing 
the consumption of heat-generating equipment. 

 
Fig. 3 Comparison of Normalized Forecasted 

and Actual PV Values for a Specific Day 

 
Fig. 2 Scheduling Scheme Considering Extra 

Scenarios 



5 

Therefore, in the ideal condition, purchasing electricity 
from the grid is minimized due to its higher cost and the 
need for additional equipment to provide heat. 

The actual situation is different. If the system is 
scheduled according to the ideal condition values, given 
that the PV generation is less than the ideal value and the 
MGT operates at the pre-set power, the power shortfall 
will be supplemented by purchasing from the grid. It can 
be observed that the power purchase from the grid 
increases significantly, leading to higher system costs.  

When using the proposed method that considers 
extra scenarios, if the PV generation exceeds the forecast 
interval, the system switches to the pre-calculated extra 
scenarios. As shown in the figure, between 8:00 and 
18:00, the power generation of the MGT increases 
significantly, indicating that the system has switched to a 
new scheduling scheme. This reduces the demand for 
power purchase from the grid. With the increase in MGT 
power generation, the heat production also increases, 
causing a decrease in the power consumption of the heat 
pump. 

According to the scheduling scheme, the costs for 
each device on the specified day are shown in Fig. 5. The 
blue bars represent the ideal costs, calculated based on 
the optimal scheduling scheme derived from forecast 
data. If there were no deviation between the actual 
values and forecasted values, this scheme would 
minimize the total system cost. The orange bars 
represent the actual costs incurred when scheduling 
according to the ideal data for that day. The green bars 

show the costs when using the proposed scheduling 
method. 

The actual costs for each device align with our 
previous analysis. Under ideal conditions, the grid incurs 
almost no purchase costs, with the main power source 
being the micro gas turbine (MGT). In the real scenario, 
if the traditional algorithm is used, where device power 
is determined by pre-calculated schemes, the cost for the 
MGT remains the same, but the grid purchase cost rises 
sharply from 0.13 CNY to 76.92 CNY. This increase is due 
to the need to compensate for the reduced PV 
generation by purchasing more power from the grid. 

When using the proposed method that considers 
extra scenarios, the cost of the MGT increases from 
263.72 CNY to 315.31 CNY, an increase of 51.59 CNY. 
However, the grid purchase cost significantly decreases 
from 76.92 CNY to 13.51 CNY. Correspondingly, the 
operating cost of the heat pump also decreases. 

 
Fig. 5 Comparison of Costs for Each Device and Total 

Costs Under Different Methods 

 
Fig. 4 Power Stack Histogram of IES Under Different Methods Over One Day 
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Under ideal conditions, the total system cost is 
286.04 CNY. This cost assumes that the system's random 
variables exactly match the forecast values, which is 
practically impossible. In the simulation, the actual PV 
generation was significantly lower than the forecasted 
generation, leading to an increase in the actual operating 
cost of the system. Following the original scheduling 
scheme, the actual system cost is 348.70 CNY, an 
increase of 62.66 CNY or 21.91% compared to the ideal 
cost. 

Using the proposed scheduling method that 
considers extra scenarios, the actual system cost is 
335.67 CNY, a reduction of 13.03 CNY compared to the 
original scheduling scheme. Compared to the 62.66 CNY 
increase in cost under the original scheduling method, 
our proposed method results in a cost increase of only 
49.63 CNY, a reduction of 20.80%. Therefore, scheduling 
using the proposed method that considers extra 
scenarios brings the system cost closer to the ideal 
optimal cost. 

This comparison demonstrates that the proposed 
method not only adapts to real-time fluctuations more 
effectively but also significantly reduces the overall 
system costs, making it a more efficient and 
economically viable approach for IES management. 

5. CONCLUSION  
This paper addresses the issue of deviations in actual 

operation from the optimal scheduling values in IESs 
caused by random variables deviating from their 
predicted values. To resolve this, we propose a 
scheduling method that expands the scenarios 
considered. Beyond the original prediction interval, our 
method selects extra data points outside the prediction 
interval for calculation. The results provide multiple 
scheduling schemes for different ranges of random 
variables. During actual operation, the appropriate 
scheduling scheme is selected from the pre-calculated 
options based on the actual values of the random 
variables. This approach prevents the increase in system 
costs that occurs when using traditional methods in the 
face of large discrepancies between predicted and actual 
values. Simulations demonstrate that the proposed 
method results in costs closer to the ideal optimal 
scenario, reducing the deviation from the ideal cost by 
20.80% compared to traditional methods. 

However, the proposed method has its limitations. In 
the simulation case, we only considered a single random 
variable. In real-world scenarios, multiple random 
variables may exceed the probabilistic interval, 
complicating the construction of extra scenarios. 

ACKNOWLEDGEMENT 
This manuscript was derived under the financial 

support of National Natural Science Foundation of China 
under Grant 51936003. 

REFERENCE  
[1] Brouwer, A. S., van den Broek, M., Seebregts, A., & 
Faaij, A. (2014). Impacts of large-scale Intermittent 
Renewable Energy Sources on electricity systems, and 
how these can be modeled. Renewable and Sustainable 
Energy Reviews, 33, 443–466.  
[2] de Jong, M., Papaefthymiou, G., & Palensky, P. (2018). 
A Framework for Incorporation of Infeed Uncertainty in 
Power System Risk-Based Security Assessment. IEEE 
Transactions on Power Systems, 33(1), 613–621. IEEE 
Transactions on Power Systems. 
[3] Li, X., Wang, W., & Wang, H. (2021). Hybrid time-scale 
energy optimal scheduling strategy for integrated energy 
system with bilateral interaction with supply and 
demand. Applied Energy, 285, 116458.  
[4] Lv, C., Yu, H., Li, P., Wang, C., Xu, X., Li, S., & Wu, J. 
(2019). Model predictive control based robust 
scheduling of community integrated energy system with 
operational flexibility. Applied Energy, 243, 250–265.  
[5] Li, Q., Xiao, X., Pu, Y., Luo, S., Liu, H., & Chen, W. 
(2023). Hierarchical optimal scheduling method for 
regional integrated energy systems considering 
electricity-hydrogen shared energy. Applied Energy, 349, 
121670.  
[6] Bludszuweit, H., Dominguez-Navarro, J. A., & 
Llombart, A. (2008). Statistical Analysis of Wind Power 
Forecast Error. IEEE Transactions on Power Systems, 
23(3), 983–991. IEEE Transactions on Power Systems.  
[7] Lang, M., Witherington, J., Turner, H., Owens, M. J., & 
Riley, P. (2021). Improving Solar Wind Forecasting Using 
Data Assimilation. Space Weather, 19(7), 
e2020SW002698.  
[8] Zhang, Y., Wang, J., & Wang, X. (2014). Review on 
probabilistic forecasting of wind power generation. 
Renewable and Sustainable Energy Reviews, 32, 255–
270. 
[9] Qin, J., Jiang, H., Lu, N., Yao, L., & Zhou, C. (2022). 
Enhancing solar PV output forecast by integrating ground 
and satellite observations with deep learning. 
Renewable and Sustainable Energy Reviews, 167, 
112680. 
[10] Welcome—Elia Open Data Portal. (n.d.). Retrieved 
July 24, 2024, from 
https://opendata.elia.be/pages/home/ 


	3.1.1 Photovoltaic Panels
	3.1.2 Wind turbine
	3.1.3 Micro Gas Turbine
	3.1.4 Battery
	3.1.5 Absorption Chiller
	3.1.6 Electric Boiler and Chiller
	3.1.7 Heat Pump

