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ABSTRACT 
Wind power is a significant part of renewable energy 

and plays a crucial role in modern power networks. 
Precise wind power prediction is essential for grid 
scheduling. Numerous studies have been undertaken to 
forecast wind energy. The traditional single prediction 
model is limited as it fails to consider the complexity of 
meteorological data, specifically the correlation between 
meteorological data and wind energy. Additionally, it 
overlooks the volatility of wind power. As a result, there 
is a decrease in prediction accuracy. This study 
introduces a novel model for prediction short-term wind 
power combinations, incorporating meteorological 
feature selection and signal decomposition to overcome 
current model constraints. Firstly, maximal information 
coefficient (MIC) is used for meteorological feature 
selection. Secondly, for the volatility of wind power, 
complete ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN) is used to decompose the 
wind power time series data. Subsequently, the 
meteorological data that underwent feature selection, 
along with the two frequency signals, were fed into the 
sample convolution and interaction network (SCINet), 
bidirectional long short-term memory (BiLSTM), and 
gated recurrent unit (GRU) models via three separate 
channels for prediction. The weight coefficients for the 
meteorological data prediction results and the signal 
decomposition prediction results were determined using 
sequential least squares programming (SLSQP). These 
weight coefficients were then used to get the final 
prediction results through a weighted combination. The 
experimental results show that the prediction accuracy 
of the model proposed in this study is significantly 
improved compared to the traditional single prediction 
model. 
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NONMENCLATURE 

Abbreviations 
CEEMDAN Complete ensemble empirical mode 

decomposition with adaptive noise 
BiLSTM Bidirectional long short-term memory 
GRU Gated recurrent unit 
SCINet Sample convolution and interaction 

network 
SLSQP Sequential least squares programming 
MIC Maximal information coefficient 
ANN Artificial neural network 
MLP Multilayer perceptron 
SVM Support vector machine 
BPNN Back propagation neural network 
LSTM Long short-term memory 
RNN Recurrent neural network 
IMF Intrinsic mode function 
RMSE Root mean square error 
MAE Mean absolute error 
Symbols 
B(n) Network size 
n Number of samples 
x Normalized value 
x0 Original value 
yit Actual value of wind power 
yip Predicted value of wind power 

1. INTRODUCTION 
Wind energy, as a renewable energy source, is an 

important component of the future energy structure [1]. 
However, wind power generation is inherently volatile 
and intermittent. Hence, the development of a more 
precise wind power prediction model is crucial for 
enhancing the accuracy of wind power forecasting, 
optimizing resource allocation, and mitigating the 
adverse effects of wind power volatility on grid stability. 
The field of wind power prediction has extensively 
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utilized various models such as artificial neural network 
(ANN) [2], multilayer perceptron (MLP) [3], support 
vector machine (SVM) [4], back propagation neural 
network (BPNN) [5], and recurrent neural network (RNN) 
[6] due to the advancements in artificial intelligence 
technology. Long short-term memory (LSTM) [7] and 
gated recurrent unit (GRU) [8], two types of recurrent 
neural networks (RNN), have superior performance in 
predicting time series data and are more adept at 
handling the nonlinear relationships within the time 
series. Nevertheless, LSTM solely considers the past data 
of the time series and disregards any future information. 
To address this limitation, BiLSTM was devised to capture 
both forward and backward information in the wind 
power time series [9]. Nevertheless, a solitary model 
frequently proves inadequate in effectively capturing the 
intricate patterns of internal fluctuations in wind power. 
Therefore, several studies have proposed the use of 
combined models to predict wind power, which includes 
optimizing LSTMs for prediction via genetic algorithms 
[10]. Existing research has not fully explored the 
complexity of meteorological data and the volatility of 
original wind power data. 

To address the issues, this work presents a model for 
predicting short-term wind power mix. The approach is 
based on the selection of meteorological features and 
signal decomposition. Initially, the MIC approach is 
employed to do feature selection. Next, the original wind 
power data undergoes CEEMDAN signal decomposition. 
Next, the SCINet model, BiLSTM model, and GRU model 
are used to predict the input meteorological data and 
decomposed high-frequency and low-frequency signals. 
Ultimately, the weighting coefficients are determined 
using the SLSQP method, and the proportion of the 
prediction results of the above models is determined 
according to the weighting coefficients to achieve the 
final prediction. The experimental results demonstrate 
that the prediction model provided in this study achieves 
a reduction of 55.31% in the root mean square error 
(RMSE) and a reduction of 38.71% in the mean absolute 
error (MAE) compared to the single LSTM model without 
feature selection and signal decomposition. 

2. METHODOLOGY  
Due to the nonlinear nature and high volatility of 

wind power time series, the CEEMDAN approach can be 
employed to deconstruct the time series into various 
intrinsic modal functions. This decomposition allows for 
more accurate prediction of different frequency signals.           

The wind power time series data undergoes 
CEEMDAN decomposition, resulting in high-frequency 

signals with nonlinear characteristics. The BiLSTM 
structure can accommodate this complex nonlinear 
relationship. Additionally, the BiLSTM structure 
considers both past and future data, enabling better 
capture of the high-frequency signal characteristics and 
improving prediction accuracy. Hence, the disintegrated 
high-frequency wind power signal is employed for short-
term forecasting by the utilization of a BiLSTM model. 
The architecture of the BiLSTM model is depicted in 
Figure 1 [11]. 
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Fig. 1 BiLSTM's structural diagram 

GRU can reduce the risk of overfitting and higher 
computational efficiency when dealing with low-
frequency signals, so it is used for short-term prediction 
of low-frequency signals of wind power time series. GRU 
mainly solves the problem of not being able to memorize 
for a long period in RNN and the gradient problem in 
backpropagation [12]. Its structure is shown in Figure 2. 
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Fig. 2 GRU's structural diagram 

When there is a large variety of data in the dataset, 
MIC can capture all the functional relationships and can 
give similar coefficients for the correlations of different 
types of data of similar degree. The calculation of MIC is 
shown in Equation (1): 

 
,( ) max { ( ) }

( )
x yMIC D M D

xy B n
 

(1) 

where B(n) is the network size and n is the number of 
samples in the dataset, which is generally taken as B(n) 
=n0.6 [13]. In this study, meteorological data with a strong 
correlation with wind power are screened by MIC. 

SCINet can accurately simulate the complex 
dynamics in a time series by extracting different 
temporal features from the downsampled subsequence 

using multiple convolution filters and combining these 
features efficiently. The overall architecture of SCINet is
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Fig. 3 SCINet's overall architecture 

shown in Figure 3. 
SLSQP is an optimization technique that uses 

gradients to solve nonlinear optimization problems with 
constraints [14]. The SLSQP technique is highly efficient 
in addressing nonlinear restricted situations. This work 
utilizes the SLSQP technique to ascertain the weights for 
model combination. 

3. WIND POWER PREDICTION MODEL 

3.1 Combination prediction process 

The flowchart of the short-term wind power 
combination prediction considering meteorological 
complexity and wind power volatility is shown in Figure 
4. 

 
Original

meteorological data
Original wind 
power data

Data 
preprocessing

Data 
preprocessing

Feature 
selection

Decompose the data 
with CEEMDAN 

Low-frequency 
signal

High-frequency 
signal

BiLSTM GRUSCINet

Short-term 
prediction

Short-term 
prediction

Short-term 
prediction

Model combination

Optimize weight 
solving

Final prediction results

Predicted
result 1

Predicted
result 2

Predicted
result 3

 
Fig.4 Flow chart for short-term wind power prediction 

Step 1: Preprocess the original meteorological data 
and original wind data. Then, apply feature selection to 
the meteorological data. Next, perform CEEMDAN signal 
decomposition on the wind power data. Finally, use the 

t-test to determine the high-frequency and low-
frequency signals. 

Step 2: The feature-selected meteorological data, 
high-frequency signals, and low-frequency signals of 
wind power from the three-channel inputs are predicted 
using the SCINet model, BiLSTM model, and GRU model, 
respectively. 

Step 3: Utilize the SLSQP method to calculate the 
weight coefficients for combining the meteorological 
data prediction results and the wind power prediction 
results, resulting in the final prediction results. 

3.2 Data preprocessing and model evaluation indicators 

This study analyzes meteorological data and 
measured wind power data from a wind farm in Jiangsu 
Province, China. The data spans a period of 50 days, from 
1 January to 19 February 2020. The objective is to 
estimate the wind power for the following day. The 
experimental simulation was conducted utilizing Python 
3.7. Table 1 displays the configurations for each model 
parameter. 

Tab.1 Model parameter configuration 

Model Parametric Value 

SCINet 

Hidden size 64 
Kernel size 5 

Learning rate 0.001 

BiLSTM 

Number of iterations 50 

Batch size 16 

Number of recurrent layers 2 

GRU 
Hidden size 64 

Number of recurrent layers 1 

3.2.1 Data normalization 

To account for the varying dimensions of different 
datasets, it is essential to normalize the meteorological 
data and wind power data. This research employs the 
maximum and minimum values for normalization, as 
indicated in Equation (2): 
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where x is the normalized value and x0 is the original data 
value; min(x0) and max (x0) denote the minimum and 
maximum values in the data set respectively. 
3.2.2 Evaluation indicators 

To assess the effectiveness of the combination 
model proposed in this study, we use RMSE and MAE as 
the evaluation metrics of the prediction model. The 
calculated values of RMSE and MAE are shown in 
Equation (3) and Equation (4), respectively. 
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where yit is the actual value of wind power, yip is the 
predicted value of wind power and n is the number of 
samples. 

4. EXPERIMENTAL VALIDATION 

4.1 Feature selection 

Traditional models ignore the complexity of 
meteorological data, and too many inputs of 
meteorological features increase the prediction error. In 
this study, six groups of data with high correlation with 
the wind power data are selected by the MIC, including 
surface pressure, mean sea level pressure, temperature 
at 2m, wind speed at 10m, relative humidity at 2m, and 
wind direction at 10m as shown in Figure 5 shown. 
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Fig.5 The outcomes of MIC's feature selection 

4.2 Signal decomposition 
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Fig.6 The original wind power data 

The original wind power data exhibits significant 
volatility, as depicted in Figure 6. 

Direct prediction of it will produce a large error, this 
study uses CEEMDAN to decompose it and reduce its 
volatility. Following the decomposition, a total of 11 
intrinsic mode function (IMF) modal components and 
one residual Res are acquired. Subsequently, the t-test 
successfully identifies IMF1-IMF6 as high-frequency 
signals, while IMF7-IMF11 are recognized as low-
frequency signals. Figure 7 displays the sequence that 
follows the CEEMDAN decomposition. 
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Fig.7 Sequence after signal decomposition 

4.3 Analysis of projected results 

4.3.1 Prediction results with initial weights set 

The decomposed high-frequency wind power signals 
are individually forecasted using BiLSTM. The predictions 
of these signals are then combined to derive the final 
prediction of the high-frequency signal, as illustrated in 
Figure 8. 
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Fig.8 BiLSTM model prediction results 

The decomposed low-frequency signals are 
individually forecasted using GRU. The resulting signal 
forecasts are then combined to derive the ultimate 
forecast of the low-frequency signal, as depicted in 
Figure 9. 
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Fig.9 GRU model prediction results 

The final prediction result after the decomposition of 
the original wind power signal is obtained by adding the 
high-frequency signal and low-frequency signal 
prediction results, as shown in Figure 10. 
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Fig.10 Sum of BiLSTM model and GRU model prediction 

results 
Figure 11 illustrates the regression of the six sets of 

meteorological data, which have undergone feature 
selection, using SCINet to forecast future wind power 
generation. 
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Fig.11 SCINet model prediction results 

The forecasts of the aforementioned three models 
are combined based on the predetermined weights, and 
the resultant forecasts are displayed in Figure 12. 
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Fig.12 Three models combination prediction results 

Currently, the RMSE of the prediction result is 
0.6789, while the MAE stands at 0.5263. The starting 
weights are directly set as follows: 0.5 for the SCINet 
prediction result and 0.5 for the sum of the prediction 
results of the high-frequency signal and the low-
frequency signal. 

4.3.2 Predictions after optimizing weights using SLSQP 

The SLSQP algorithm is employed to determine the 
weights that minimize the root mean square error. The 
resulting projected values are displayed in Figure 13. 
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Fig.13 Final predicted values based on SLSQP 

The optimal solution yields weights of 0.2 for SCINet 
prediction and 0.8 for the sum of high-frequency signal 
and low-frequency signal prediction. With these weights, 
the RMSE and the MAE are reduced by 38.49% and 
39.59% respectively, compared to when the weights 
were not solved by the SLSQP algorithm. 

4.4 Comparative experiments 

To authenticate the precision and soundness of the 
combinatorial model put out in this research, we devised 
a comparative experiment. The initial comparative 
experiment employs a solitary LSTM, GRU, and SCINet to 
forecast forthcoming wind power based on past wind 
power data. In the second comparative experiment, a 
single LSTM, GRU, and SCINet model are employed to 
perform regression on meteorological data to forecast 
future wind power. Table 2 displays the forecast 
inaccuracies of several models. 

Tab.2 Prediction error values for various models 

Model RMSE MAE 

LSTM 0.9344 0.5187 
GRU 0.8041 0.7091 

SCINet 10.0085 6.2756 
Regression prediction-LSTM 1.3483 1.1625 
Regression prediction-GRU 5.4833 4.7669 

Regression prediction-SCINet 6.7187 5.2380 
MIC-CEEMDAN-SCINet-

BiLSTM-GRU-SLSQP 
0.4176 0.3179 

Based on the error values in Table 2, the proposed 
method has higher prediction accuracy than other 
models. In the prediction based on historical wind power 
data, compared with a single LSTM model without 
feature selection and signal decomposition, the RMSE of 
the proposed model is reduced by 55.31% and the MAE 
is reduced by 38.71%. In the regression prediction based 
on meteorological data, compared with the single LSTM 
model without feature selection and signal 
decomposition, the RMSE of the proposed model is 
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reduced by 69.03% and the MAE is reduced by 72.65%. It 
is concluded that the model proposed in this paper fits 
better with the real data. 

5. CONCLUSIONS 
The wind power combination prediction model, 

known as SCINet-BiLSTM-GRU-SLSQP, presented in this 
research, enhances the accuracy of short-term wind 
power forecast by incorporating meteorological feature 
selection and signal decomposition. The following 
deductions can be derived from experiments: 

1) The use of MIC can accurately screen out 
meteorological data types with high correlation with 
wind power and reduce the complexity of the prediction 
model. 

2) The CEEMDAN approach mitigates the influence of 
wind power data volatility on prediction accuracy. 

3) The SCINet-BiLSTM-GRU-SLSQP combined model 
takes into account both meteorological data complexity 
and wind power volatility, combines meteorological 
feature selection and signal decomposition, and 
improves the overall prediction accuracy by efficiently 
assigning weights. This approach provides additional 
advantages over the use of traditional single prediction 
models. 
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