
 

Enhancing Multimodal Meteorological Data Resolution via Diffusion Model for 

Accurate PV Potential Estimation  

Jiaze Li1, Zhiling Guo2*, Huan Zhao2, Hongjun Tan2, Qing Yu3, Rui Zhang1, Jian Xu2, Jinyue Yan2 

1 Beijing-Dublin International College, Beijing University of Technology, Beijing, China 

2 Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China 

3 School of Urban Planning & Design, Peking University 

(Corresponding Author: zhiling.guo@polyu.edu.hk) 
 

ABSTRACT 
High-resolution meteorological data is crucial for 

accurately assessing photovoltaic potential at the 
microclimatic level. However, due to the scarcity of high-
resolution data, modeling microclimates often becomes 
severely inaccurate, highlighting the need for 
technologies that improve the resolution of solar data. 
Additionally, current super-resolution models often fall 
short in accurately processing multimodal solar energy 
data, which is essential for improving the precision of PV 
potential estimation. This paper proposes a novel 
downscaling framework for meteorological data that 
leverages deep generative models. By integrating 
multimodal meteorological data from the National Solar 
Radiation Database (NSRDB), including Direct Normal 
Irradiance (DNI), Diffuse Horizontal Irradiance (DHI) and 
other relevant variables, with a diffusion model, the 
framework produces meteorological data at a high 
spatial resolution. Experimental results demonstrate 
that our super-resolution approach not only 
outperforms baseline methods but also significantly 
enhances the accuracy of PV potential estimation when 
compared to using coarse resolution data. Consequently, 
the diffusion-based super-resolution framework shows 
great promise for widespread adoption in the field of 
photovoltaic energy. 
 
Keywords: Renewable energy, super resolution, 
diffusion model, multimodal learning, high resolution 
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NONMENCLATURE 

Abbreviations  
 PV Photovoltaic 
 DHI Diffused Horizontal Irradiance 
 GHI Global Horizontal Irradiance 
 DNI Direct Normal Irradiance 

 
# This is a paper for the 16th International Conference on Applied Energy (ICAE2024), Sep. 1-5, 2024, Niigata, Japan. 

1. INTRODUCTION 
Photovoltaic (PV) power generation is a 

cornerstone of the global transition to renewable 
energy, offering a clean and sustainable alternative to 
fossil fuels. Over the past few decades, advancements in 
PV technology have significantly increased the efficiency 
and scalability of solar power systems, making them a 
vital component in the quest to reduce greenhouse gas 
emissions and combat climate change. The continued 
development of PV systems has enabled their 
widespread adoption across diverse geographic regions, 
contributing to the growth of renewable energy capacity 
worldwide[1]. 

As PV systems become increasingly integral to 
global energy strategies, accurately estimating their 
potential in specific locations is essential. Precise 
assessments of PV potential inform crucial decisions 
regarding site selection, system design, and energy 
policy, ultimately influencing the effectiveness and 
reliability of solar energy deployment. Accurate 
estimation depends on high-resolution solar data and 
the integration of multimodal inputs, such as 
temperature, wind speed, and solar irradiance. 

However, current research efforts often encounter 
significant challenges in effectively utilizing this high-
resolution, multimodal solar data. These challenges can 
lead to imprecise estimates of PV system performance, 
undermining the reliability of renewable energy 
projections and hindering the optimization of solar 
power generation. 

Recent advancements in deep learning, particularly 
diffusion modeling, offer promising solutions to these 
challenges. Diffusion models, originally developed for 
generative tasks, have emerged as powerful tools in 
enhancing data resolution through a process of 
iteratively refining data representations. In the context 
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of super-resolution, diffusion models transform low-
resolution data into high-resolution outputs by gradually 
denoising and upsampling the data through a series of 
learned transformations. 

These models have shown significant potential in 
enhancing the resolution of various types of weather 
data, including solar irradiance, temperature, and wind 
speed. By refining the resolution of this data, diffusion 
models enable more precise detection and estimation of 
photovoltaic potential, which is crucial for optimizing the 
performance of PV systems. 

This research specifically explores the use of 
diffusion modeling to achieve super-resolution of 
weather data, utilizing datasets from the National Solar 
Radiation Database (NSRDB). A key innovation in this 
work is the introduction of the DySample module within 
the upsampling process of the Unet architecture, 
coupled with the integration of the Swin Transformer 
technique to enhance feature representation during the 
denoising phase of the diffusion model. These 
advancements aim to improve the accuracy of model 
inference, thereby enhancing the precision of 
photovoltaic power generation estimates. 

In summary, our contributions are: 
a) Proposes a framework that improves PV 

potential estimation accuracy by fusing 
multimodal meteorological data with super-
resolution techniques. 

b) Utilizes an advanced diffusion model to achieve 
super-resolution for meteorological data, 
enhancing the resolution and detail. 

c) Combines the Swin Transformer with the 
DySample module in the Unet’s upsampling 
process during diffusion model denoising, 
leading to more precise inference and improved 
model performance. 

2. RELATED WORK  

2.1 PV potential estimation 

Photovoltaic (PV) power generation is a critical 
element in the global transition to sustainable energy, 
offering a clean and renewable alternative to fossil fuels. 
As PV systems become more widespread, their potential 
to meet significant portions of global energy demand has 
grown, underscoring the importance of accurate 
planning and optimization. Central to this process is the 
precise estimation of PV potential, which involves 
assessing the capacity of a specific location to generate 
solar power based on various environmental and 
geographic factors. This estimation is crucial for 

determining the viability and efficiency of PV 
installations, guiding decisions related to site selection, 
system design, and energy policy[1]. 

Traditional methods for PV potential estimation have 
heavily relied on remote sensing (RS) technologies, 
which provide large-scale observational data across 
diverse environments. RS techniques, including satellite 
imagery, aerial photography, and LiDAR, have been 
widely used to assess solar energy potential due to their 
ability to capture extensive data over large areas. These 
methods, as highlighted by Chen et al[2], play a 
significant role in various stages of PV system 
development, from site selection to performance 
monitoring. However, the reliance on low-resolution 
data often limits these methods' ability to capture the 
microclimatic nuances that are essential for accurate PV 
potential assessments. This limitation can lead to 
inaccuracies in predicting PV system performance, 
thereby affecting the optimization and deployment of 
solar energy resources[3]. 

To address these challenges, there is a growing need 
for methods that enhance the resolution of data used in 
PV potential estimation. Improving data resolution 
allows for more detailed and accurate assessments, 
which are critical for optimizing PV system performance 
and maximizing the efficiency of solar energy generation. 

2.2 Super resolution for meteorological data 

In recent years, deep learning has emerged as a 
powerful tool for enhancing the resolution of image data, 
which is critical in fields such as photovoltaic (PV) 
potential estimation. Traditional super-resolution 
methods have primarily relied on techniques like 
Generative Adversarial Network (GAN) [4]. GANs work by 
pitting two neural networks against each other: a 
generator, which attempts to create high-resolution 
images from low-resolution inputs, and a discriminator, 
which evaluates the authenticity of these images. While 
GANs have shown some success in super-resolution 
tasks, they come with notable limitations, particularly in 
terms of achieving improved accuracy in PV potential 
estimation through super-resolution of solar-related 
data. GANs are often difficult to train, requiring extensive 
computational resources and careful tuning to avoid 
issues such as mode collapse [5]. 

To address these challenges, diffusion models have 
emerged as a promising alternative for super-resolution 
tasks. Denoising Diffusion Probabilistic Model[6], Score-
based diffusion model[7] and the more recent Stable 
Diffusion model[8] , represent significant advancements 
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in this field Originally developed for generative tasks, 
diffusion models refine input data by progressively 
reconstructing it from a noisy, low-resolution state into a 
high-resolution output, effectively capturing intricate 
details often missed by traditional methods and 
frequently surpassing them in both quality and accuracy. 
The robust structure has allowed diffusion models to 
show much promising potential for super-resolution 
tasks as well, and is beginning to be applied to super-
resolution tasks including meteorological data [9][10]. 

Despite their advantages, diffusion models still face 
challenges when applied to multimodal and fine-scale 
meteorological data. They often struggle to accurately 
capture the complex interactions between different 
types of weather data, such as solar irradiance, 
temperature, and wind speed. These limitations can lead 
to suboptimal performance in tasks that require precise 
high-resolution outputs.  

To overcome these challenges, this paper proposes 
a diffusion-based framework specifically designed for the 
super-resolution of multimodal weather data. Our 
framework is based on the latest innovations in 
upsampling[11] and attention techniques[12] integrating 
the SwinT-DyS module to enhance the model’s ability to 
process fine-scale data, ultimately improving the 
accuracy and reliability of PV potential estimation. 

3. METHODOLOGY 
3.1 SwinT-DyS 

To improve the accuracy of meteorological data 
super-resolution within diffusion models, we initially 
employed the DySample module[11] as a dynamic 
upsampling solution within the Unet architecture. While 
DySample demonstrated significant advantages in 
computational efficiency and lightweight design, its 
performance at fine scales in meteorological data did not 
fully meet expectations. To address these limitations, we 
introduced the SwinT-DyS module, a fusion of the Swin 
Transformer[12] and DySample, aimed at enhancing the 
upsampling process for better results. The structure of 
the SwinT-DyS module is illustrated in Figure 1. 

Figure 1 (a) shows the structure of two Swin 
Transformer consecutive blocks, each constructed based 
on shifted windows. These blocks differ from 
conventional multi-head self-attention (MSA) modules 
by employing a window-based mechanism. Each Swin 
Transformer block consists of LayerNorm (LN) layer, 
Multi-head Self Attention (MSA) module, residual 
connection, and 2-layer Multi-Layer Perceptron (MLP) 
with GELU non-linearity. The two consecutive Swin 
Transformer blocks alternate between Window-based 

MSA (W-MSA) and Shifted Window-based MSA (SW-
MSA). In the first block, W-MSA calculates attention 
within patches inside each window, focusing on localized 
regions. In the second block, SW-MSA shifts the windows 
in the top-left direction using a cyclic shifting mechanism, 
resulting in windows composed of non-adjacent sub-
windows. The input and output of a continuous Swin 
Transformer block can be expressed as follows: 

𝑥𝑙 = 𝑊 − 𝑀𝑆𝐴 (𝐿𝑁(𝑥𝑙−1)) + 𝑥𝑙−1 (1) 

𝑥𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(𝑥𝑙)) + 𝑥𝑙 (2) 

𝑥𝑙+1 = 𝑆𝑊 − 𝑀𝑆𝐴 (𝐿𝑁(𝑥𝑙)) + 𝑥𝑙 (3) 

𝑥𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁(𝑥𝑙+1)) + 𝑥𝑙+1 (4) 

where 𝑥𝑙  and 𝑥𝑙  represent the outputs of the (S)W-

MSA module and the MLP module of the 𝑙𝑡ℎ the block. 
The self-attention computed in W-MSA and SW-MSA can 
be written as follows: 

𝑄 = 𝑥𝑙𝑊𝑄, 𝐾 = 𝑥𝑙𝑊𝐾 , 𝑉 = 𝑥𝑙𝑊𝑉 , (5) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑙) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝐵) 𝑉 (6) 

where 𝑊𝑄 , 𝑊𝐾 and  𝑊𝑉 ∈ ℝ𝐷×𝑑 are the learnable 

parameters of three projection matrices. 𝑄, 𝐾, 𝑉 ∈

ℝ𝐿×𝑑  are the 𝑞𝑢𝑒𝑟𝑦 , 𝑘𝑒𝑦 , and 𝑣𝑎𝑙𝑢𝑒  matrices; 𝑑 

represents the dimension of 𝑞𝑢𝑒𝑟𝑦 or 𝑘𝑒𝑦. 𝐵 ∈ ℝ𝐿×𝑑 
denotes the relative position bias. 

 
Fig 1. SwinT-DyS Module 

The DySample module, as shown in Figure 1 (b), 
efficiently upscales feature maps using dynamic grid 
sampling. It begins by generating an offset map, which is 
combined with the original sampling grid to create a new 
sampling set. This set is then used to produce the 
upsampled feature map through bilinear interpolation. 

To further enhance feature representation, we 
integrated the Swin Transformer into the DySample 
module. Specifically, the Swin Transformer is applied 
immediately after the dynamic sampling step within 
DySample. This integration allows the network to
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Fig 2. Diffusion Model with SwinT-DyS Block 
process the upsampled feature maps with the Swin 
Transformer's window-based and shifted window-based 
multi-head self-attention (W-MSA and SW-MSA) 
mechanisms. 
3.2 Diffusion model 

We utilize a score-based diffusion model to enhance 
the resolution of multimodal meteorological data, 
specifically focusing on improving the accuracy of 
photovoltaic (PV) potential estimation. The core of our 
approach lies in a Score-Based Generative Model[7], 
which operates by iteratively refining noisy, low-
resolution inputs to generate high-resolution outputs. 

The forward diffusion process systematically 
corrupts the original low-resolution data 𝑥0 by adding 
Gaussian noise over a time interval  𝑡 ∈ [0, 𝑇] . This 
gradual noising process is described by the Stochastic 
Differential Equation (SDE): 

𝑑𝑥 = 𝑓(𝑥, 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑𝑤 (7) 
where 𝑓(𝑥, 𝑡) denotes the drift coefficient, 𝑔(𝑡) is the 
diffusion coefficient responsible for the noise scale, and 
𝑤  represents a Wiener process. By the end of the 
forward process, the data is transformed into a standard 
Gaussian distribution, 𝑥𝑇~𝒩(0, Ι). 

To achieve super-resolution, the reverse diffusion 
process is employed to progressively denoise the 
corrupted data 𝑥𝑇, reconstructing a high-resolution 
version 𝑥0. The reverse process is governed by the 
following SDE: 

𝑑𝑥 = [𝑓(𝑥, 𝑡) − 𝑔(𝑡)2∇𝑥 log 𝑝𝑡(𝑥)]𝑑𝑡 + 𝑔(𝑡)𝑑�̅� (8) 
where �̅�  is a Wiener process with time flowing 
backwards from 𝑇  to 0 , ∇𝑥 log 𝑝𝑡(𝑥)  is the score 
function, a vector field that points towards regions of 
higher data density. It does not depend on the 

intractable normalization constant, making it easier to 
evaluate. 

The score function ∇𝑥 log 𝑝𝑡(𝑥) is parameterized 
by a neural network 𝑠𝜃(𝑥, 𝑡) , which is implemented 
using a Unet architecture. The Unet is optimized to 
accurately estimate the score function across different 
noise levels by minimizing the following score-matching 
loss: 

𝜃∗ = arg min
𝜃

𝔼𝑡{𝜆(𝑡)𝔼𝑥(0)𝔼𝑥(𝑡)∣𝑥(0)[∥ 𝑠𝜃(𝑥, 𝑡) (9) 

                        −∇𝑥(𝑡) log 𝑝𝑡(𝑥(𝑡)|𝑥(0)) ∥2
2]} 

where 𝜆(𝑡) is a weighting function that modulates the 
importance of different time steps during training. 𝑡 is 
uniformly sampled from the interval [0, 𝑇] . This 
equation is derived by minimizing the evidence lower 
bound (ELBO) on the negative log-likelihood, 
𝔼[− log 𝑝(𝑥0)] with reweighting by 𝜆(𝑡). 

To further enhance the model's performance in 
super-resolving meteorological data, we integrate the 
SwinT-DyS module within the Unet's upsampling 
process. The SwinT-DyS module combines the robust 
attention mechanisms of the Swin Transformer with the 
dynamic sampling capabilities of DySample. This 
integration allows for more precise feature 
representation during the denoising process, thereby 
improving the overall accuracy of the super-resolved 
meteorological data and, consequently, the PV potential 
estimation. 

4. EXPERIMENT 
To validate the effectiveness of our diffusion model-

based framework in enhancing the resolution of solar 
energy data, and to assess the significant benefits of the 
improved SwinT-DyS modules, we conducted a 



5 

comprehensive series of experiments. Model training 
was performed on a system equipped with a single 
NVIDIA RTX 4090D GPU (24GB) and a 16v Intel(R) Xeon(R) 
Platinum 8474C CPU, using a batch size of 8, a learning 
rate of 0.0001, and 40 epochs. 

The experiments included a comparative analysis 
between the diffusion framework, a traditional 
interpolation method, and the well-established Unet 
model. Additionally, ablation studies were conducted to 
isolate and evaluate the specific contributions of the 
SwinT-DyS modules. To further demonstrate the impact 
of our super-resolution data, we conducted a PV 
Potential Estimation experiment to evaluate test 
accuracy, highlighting the role of enhanced data in 
improving photovoltaic potential predictions. 
4.1 Datasets 

For this study, the training data was sourced from 
the National Solar Radiation Database (NSRDB) for the 
Beijing region, using data from the years 2018 and 2019. 
For experimental validation, we utilized high-resolution 
data from the same region in January 2020, which also 
had a spatial resolution of 2 km, serving as our ground 
truth dataset. To create a low-resolution experimental 
dataset, we applied an interpolation method to 
downsample the 2020 high-resolution data, resulting in 
a dataset with a spatial resolution of 4km, 8km, 16 km. A 
detailed overview of the datasets used in this study is 
provided in the following table: 

Characteristics Values 

Data feature Temperature 
 DHI 
 DNI 
 GHI 
 Wind Speed 
High Spatial Resolution 2km 
Low Spatial Resolution 4km, 8km, 16km 
Temporal Resolution 60 minutes 
Model Name PSM V3 
Satellite Himawari 
Years 2018-2020 

Table 1. Overview of the dataset 
4.2 Evaluation metrics 

In the experimental portion of this study, we 
evaluate the performance of our super-resolution 
framework using three widely recognized metrics: Mean 
Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), 
and Structural Similarity Index Measure (SSIM). These 
metrics provide a comprehensive assessment of the 
accuracy, quality, and perceptual similarity of the 
reconstructed high-resolution images compared to the 
ground truth. 

MAE measures the average absolute difference 
between predicted and true values. The formula is:  

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑥𝑖 −  𝑥𝑖|

𝑁

𝑖=1

(10) 

where N is the total number of data points, xi is the 
true value, and x̂i is the predicted value. 

PSNR quantifies the quality of the reconstructed 
image by comparing the maximum possible pixel value to 
the mean squared error (MSE), which measures the 
average of the squares of the differences between the 
true and predicted values. The formula is:  

𝑃𝑆𝑁𝑅 = 20 ∙ 𝑙𝑜𝑔10 (
1

√𝑀𝑆𝐸
) (11) 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑥𝑖 −  𝑥𝑖)2

𝑁

𝑖=1

(12) 

where 𝑁 is the total number of data points, 𝑥𝑖 is the 
true value, and 𝑥𝑖 is the predicted value. 

SSIM assesses the perceptual similarity between 
two images, considering luminance, contrast, and 
structure. The formula is:  

𝑆𝑆𝐼𝑀(𝑥, 𝑥) =  
(2𝜇𝑥𝜇𝑥 + 𝐶1)(2𝜎𝑥𝑥 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑥

2 + 𝐶1)(𝜎𝑥
2 + 𝜎�̂�

2 + 𝐶2)
(13) 

where μx and μx̂ are the mean intensities of the true 

and predicted images, σx
2 and σx̂

2 are the variances of 
the true and predicted images, σxx̂  is the covariance 
between the true and predicted images, C1  and C2 
are stabilizing constants to avoid division by zero. 
4.3 Results and discussion 

4.3.1 Meteorological Data Super-Resolution 
In this section, we present the experimental 

evaluation of three super-resolution methods: Bilinear 
interpolation, Unet, and Diffusion, applied to 
meteorological data from Beijing, January 2020. The 
experiment was conducted on five key meteorological 
variables: Temperature, Diffuse Horizontal Irradiance 
(DHI), Direct Normal Irradiance (DNI), Global Horizontal 
Irradiance (GHI), and Wind Speed with a spatial 
resolution of 16 km. The primary goal of this experiment 
is to enhance the spatial resolution of this data and 
compare the effectiveness of the three methods in terms 
of accuracy and quality across various meteorological 
variables. 

As shown in Table 2, for the solar data variables (DHI, 
DNI, and GHI), the Diffusion model demonstrated a 
significant lead across all three measures (MAE, PSNR, 
and SSIM). This dominant performance is likely due to 
the model's strength in capturing and preserving the 
intricate spatial patterns and variability inherent in solar  
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Table 2. Performance Comparison of Super-Resolution Methods Across Meteorological Variables at Different Scales 
irradiance data. The Diffusion model's ability to maintain 
high structural similarity and low noise levels makes it 
particularly effective for these types of data. Among the 
solar variables, GHI exhibited the weakest performance, 
particularly in comparison to DHI and DNI. This could be 
attributed to the complex and diffuse nature of global 
horizontal irradiance, which combines both direct and 
scattered sunlight. The inherent variability and the 
diffuse component of GHI make it more challenging to 
model accurately, leading to slightly lower performance 
even with advanced techniques like the Diffusion model. 
A surprising finding from our experiments is that bilinear 
interpolation outperformed the deep learning method 
on the variables of Temperature and Wind Speed, 
especially at lower scales. This unexpected result 
suggests that there may be underlying factors related to 
the multimodal nature of the data or potential issues 
within the dataset itself. However, as the super-
resolution scale increased, the gap between Bilinear 
interpolation and the more advanced methods 
narrowed. At the × 8 scale, the Diffusion model 
ultimately achieved superior results in PSNR and SSIM for 
both Temperature and Wind Speed. This shift suggests 
that the Diffusion model is better suited to handling the 
increased complexity and detail required at higher 
resolutions. 

Future work could explore integrating more 
sophisticated loss functions tailored to the specific 
characteristics of different meteorological variables, 
potentially addressing the current limitations observed 
in GHI modeling. Additionally, further optimization of the 
Diffusion model to handle non-normally distributed data 
more effectively could make model even more robust 
across a wider range of applications The Diffusion 
model's ability to maintain high structural similarity and 
low noise levels makes it particularly effective for these 
types of data.  
4.3.2 Ablation Study 

The ablation study assesses the impact of 
integrating the SwinT-DyS module into the Diffusion 
model on super-resolution performance, using DHI data 
from January 2020 for comparison. As shown in Table 3, 
the Diffusion model with the integrated SwinT-DyS 
module achieves a lower MAE, indicating a reduction in 
absolute errors, while the higher PSNR and SSIM values 
demonstrate improvements in image quality and 
structural preservation. The SwinT-DyS module clearly 
plays a critical role in enhancing the model's overall 
performance, making it more effective for super-
resolution tasks involving meteorological data. 

Diffusion SwinT-DyS MAE↓ PSNR↑ SSIM↑ 

✓  1.17 34.93 0.9919 

✓ ✓ 1.05 35.41 0.9925 

Table 3. Ablation Study Results 
4.3.3 Enhanced PV Potential Estimation Using 

Diffusion-Based Super-Resolution Data 
In this study, we employ the pvlib library[13] to 

estimate the photovoltaic (PV) potential using 
meteorological data at different spatial resolutions for 
Beijing in January 2020. The primary objective is to 
compare the PV potential estimates derived from low-
resolution data against those generated using super-
resolution data produced by our diffusion model. 

The analog PV system is configured with a fixed tilt 
angle of 40° and oriented due south, which is typical for 
installations in the Beijing region. The system parameters 
are modeled using the Sandia PV module and CEC 
inverter models provided within pvlib. The calculation 
involves determining the total plane-of-array (POA) 
irradiance, considering both direct and diffuse 
components, as well as the module's cell temperature, 
based on the relevant data used to produce the super-
resolution output. The DC power output is computed 
based on the effective irradiance and module 
temperature, then converted to AC power using the 
inverter model. The resulting ac power output is 

Scale Method 
Temperature DHI DNI GHI Wind Speed 

MAE↓/PSNR↑/SSIM↑ MAE↓/PSNR↑/SSIM↑ MAE↓/PSNR↑/SSIM↑ MAE↓/PSNR↑/SSIM↑ MAE↓/PSNR↑/SSIM↑ 

× 2 
bilinear 0.31/34.84/0.9680 1.14/34.92/0.9919 7.09/30.35/0.9835 2.27/35.21/0.9942 0.04/31.49/0.9903 
Unet 0.43/33.54/0.9483 1.16/34.97/0.9918 7.09/30.37/0.9835 2.28/35.24/0.9940 0.42/21.30/0.6807 
Ours 0.41/34.28/0.9482 1.05/35.41/0.9925 6.17/30.87/0.9862 2.03/35.68/0.9947 0.37/24.63/0.6286 

× 4 
bilinear 0.45/33.16/0.9354 1.57/33.40/0.9891 9.86/28.94/0.9742 3.13/33.82/0.9921 0.05/31.40/0.9881 
Unet 0.51/32.55/0.9232 1.59/33.45/0.9890 9.86/28.95/0.9743 3.14/33.85/0.9920 0.43/21.23/0.6687 
Ours 0.49/33.14/0.9310 1.48/33.69/0.9894 8.88/29.39/0.9778 2.88/34.21/0.9927 0.30/25.21/0.6268 

× 8 
bilinear 0.63/31.28/0.8900 2.04/32.08/0.9851 12.96/27.59/0.9620 4.08/32.47/0.9895 0.08/30.83/0.9785 
Unet 0.67/30.78/0.8763 2.06/27.60/0.9620 12.99/27.60/0.9620 4.09/32.73/0.9893 0.46/21.29/0.9786 
Ours 0.64/31.39/0.8998 1.97/32.21/0.9853 12.02/27.95/0.9660 3.85/32.78/0.9898 0.32/24.85/0.6067 
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Fig 3. Chaoyang Rooftop PV Potential Comparison High vs Low Resolution. The left side of the figure shows an example of 
PV output visualization for part of Chaoyang, Beijing. The right side highlights the differences in PV output when 

comparing the high-resolution data with a coarser resolution data. 
aggregated over time to estimate the total PV generation 
potential of each grid point for a whole month. 

We then integrated the data on PV potential per 
unit area with the data on roof area in Beijing to calculate 
the PV potential of each roof, as seen in Figure 4 for the 
visualization of rooftop PV potential in Beijing. After 
visualization, it becomes evident that the estimates from 
the high-resolution data offer several advantages. The 
finer spatial resolution provides a more detailed and 
accurate depiction of the PV potential across the region, 
capturing subtle variations that are missed in the low-
resolution data. This enhanced clarity in the high-
resolution results underscores the value of super-
resolution techniques, which significantly improve the 
precision of renewable energy assessments. These 
advantages highlight the potential of our diffusion-based 
approach to refine energy modeling and planning, 
making it an essential tool for future applications. 

5. CONCLUSIONS 
This study has demonstrated the effectiveness of a 

diffusion model-based framework in enhancing the 
resolution of multimodal meteorological data, leading to 
more accurate photovoltaic potential estimations. By 
integrating advanced techniques such as the SwinT-DyS 
module within the Unet architecture, our approach 

significantly improves the quality of super-resolution 
outputs. The results underscore the importance of high-
resolution data in renewable energy applications and 
highlight the potential of our method to support more 
precise and reliable energy assessments, thereby 
contributing to the optimization of solar power 
deployment strategies. 
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