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ABSTRACT 
During the implementation of CCUS-EOR projects, 

clearly defining the distribution of key attributes 
between injection and production wells relies on 
reservoir numerical simulation. However, the complex 
solution process of compositional models results in high 
computational costs for traditional numerical simulators. 
Deep learning surrogate models can serve as a reliable 
alternative to reservoir numerical simulators, 
significantly improving computational efficiency. This 
study establishes a surrogate model based on the Fourier 
Neural Operator (FNO) for 3D heterogeneous CO2 
displacement numerical simulation. The model predicts 
the distribution of pressure, CO2 molar fraction, and oil 
saturation at each time step using heterogeneous 
porosity, permeability fields, and injection-production 
parameters. The research results demonstrate that the 
developed surrogate model can quickly and accurately 
predict the distribution of various attributes in the 
heterogeneous 3D reservoir. It can accurately capture 
the different displacement characteristics in the miscible 
and near-miscible regions during the CO2 flooding 
process. Additionally, the model is able to learn from the 
data the differences in gas influx across perforated layers 
in the vertically positive rhythm and reverse rhythmic 
heterogeneous reservoirs, as well as the impact of 
gravity override on CO2 displacement characteristics. 
After training, the surrogate model can achieve a 360-
fold improvement in computational efficiency compared 
to the numerical simulator. The work in this paper has 
certain application prospects for engineering tasks such 
as rapid site selection of CO2 injection pilot areas in 
heterogeneous 3D reservoirs, optimization of injection 
and production parameters, and determination of the 
migration direction of the CO2 gas injection front. 
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NONMENCLATURE 

Abbreviations  

CCUS 
Carbon Capture, Utilization, and 
Storage 

EOR Enhanced Oil Recovery 
FNO Fourier Neural Operator 

Symbols  

o , w , g  Oil, water, gas phase density, kg/m3 

rok , rwk , rgk  
Relative permeability of oil, water, 
gas  

op  Oil phase pressure, MPa  

cN  Number of non-aqueous components 

D  Depth, m 

iq  
Injection or production rate of 
component i, m3/d 

oS , wS , gS  Oil, water, gas phase saturation 

ix , iy , 
Mole fraction of component i in the 
liquid, gas phase 

iz  
Total mole fraction of component i in 
the hydrocarbon system 

o , w , g  Oil, water, gas viscosity, mPa·s 

1. INTRODUCTION 
CCUS-EOR technology can significantly increase oil 

recovery rates while achieving geological CO2 storage, 
providing economic benefits. Given the global context of 
large-scale carbon emission reduction, this technology 
has extensive application prospects. In the application 
process of CO2 flooding, understanding the distribution 
of underground fluids and CO2 is crucial for formulating 
development technology policies. Premature gas 
channeling not only reduces the increase in recovery 
factor, but also affects the storage effectiveness, posing 
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great risks to personnel, equipment safety, and the 
environment[1–5]. 

Reservoir numerical simulation is a commonly used 
technique to determine the distribution of important 
properties during reservoir development. The essence of 
numerical simulation is to solve a system of partial 
differential equations that can describe the dynamics of 
the actual reservoir using computers. This allows us to 
obtain numerical distributions of important reservoir 
properties over time, approximating the production 
dynamics of the reservoir. For CO2 flooding reservoirs, 
numerical simulation typically employs a compositional 
model. The compositional model is not based on fluid 
phases but starts from the composition of hydrocarbons 
within the reservoir, which can better reflect the changes 
in different components of oil, gas, and water phases 
during the CO2 flooding process. Common reservoir 
numerical simulation software solves the model using 
finite difference methods, which involve complex phase 
equilibrium calculations and have high computational 
costs[6]. In recent years, with the development of deep 
learning, it has been widely applied in solving partial 
differential equations, providing new ideas for 
accelerating reservoir numerical simulation[7,8]. The 
Fourier Neural Operator (FNO) is a data-driven 
framework proposed by Li[9] for solving partial 
differential equations. This method uses neural networks 
to learn the mapping between infinite-dimensional 
function spaces, enabling the transfer of solution 
strategies. Existing research results have shown that FNO 
can accurately solve underground multiphase flow 
problems while demonstrating excellent generalization 
capabilities[10-17]. 

In this study, the Fourier neural operator is applied 
to the numerical simulation problem of 3D 
heterogeneous CO2 flooding reservoirs. Based on the 
FNO framework, a surrogate model for reservoir 
numerical simulation is established to solve the field 
diagram problem of pressure, CO2 mole fraction and oil 
saturation at each time step in the CO2 flooding reservoir 
under heterogeneous reservoirs and different injection 
and production parameters. 

2. PROBLEM SETTING  

2.1 Governing equation 

The governing equations for the CO2 flooding 
compositional model assume the presence of three 

phases in the reservoir: oil, gas, and water, with CN  

components. Each component can exist and move in 
multiple phases, while undergoing mass exchange 

between different phases. The governing equation is 
represented by Equation (1). 
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2.2 Numerical simulation setting 

In this study, a 3D heterogeneous five-spot well 
pattern CO2 flooding compositional model was 
established using the CMG reservoir simulator. The 
model consisted of a grid with dimensions of 21x21x5 
cells in the X, Y, and Z directions, respectively, with a 
horizontal grid spacing of 20m and a vertical grid spacing 
of 2m. An injection well was positioned at the center of 
the reservoir, while production wells were placed at the 
four corners. The distance between the injection well 
and the production wells was 300m, with all wells 
perforated within the vertical extent of the reservoir. The 
original formation pressure of the reservoir was 22MPa, 
and the original oil saturation was 0.8.  

2.3 Variable sampling scheme 

By varying the reservoir heterogeneity porosity field, 
the heterogeneity permeability field, gas injection rate, 
and the bottomhole flowing pressure in the production 
well, we aim to investigate the temporal variations of 
reservoir pressure, CO2 mole fraction, and oil saturation 
distribution during the CO2 flooding process under 
different reservoir and injection-production parameters. 

The heterogeneity field is generated based on a 
Gaussian covariance model[18], as shown in Equation (2). 
Using the covariance model, a spatial random field is 
generated using the randomization method proposed by 
Heße[19].  

 
     = − −  +      

2

2( ) 1 exp
r

r s n  (2) 

Where r is the (isotropic) lag distance, l is the main 
correlation length, s is a rescaling factor to adjust model 

representation, 2 is the variance, and n is the nugget 
value. 

Furthermore, we investigate the impact of intra-
layer heterogeneity on the performance of CO2 flooding. 
We set the permeability contrast ratio to 27 and consider 
two types of moderately heterogeneous reservoirs: 
positive rhythm and reverse rhythm. Figure 1 shows two 
types of random heterogeneous permeability and 
porosity field maps generated using the above model. 



3 

The distribution range of each variable is shown in Table 
1. 

 

 
Using the Latin Hypercube Sampling method [20], we 

generated 1000 diverse cases of heterogeneous fields 
and injection-production parameters. We simulated CO2 
flooding for 60 months, with each time step representing 
a period of 3 months. The GEM compositional simulator 
was utilized to compute the numerical model, resulting 
in a time series dataset comprising pressure, CO2 mole 
fraction, and oil saturation distributions for 20 time 
steps. The dataset was partitioned into training, 
validation, and testing sets in an 8:1:1 ratio. 

3. METHODOLOGY  

3.1 FNO Architecture 

For a nonlinear mapping →
† : , where is the 

input function space and is the output function space, 

assuming we have observed values =1{ , }N
j j ja u , the neural 

operator constructs an operator  using a neural 

network for certain finite-dimensional parameter space

 . The goal is to learn an approximation of † by 
minimizing the cost function, as shown in Equation (3). In 
this paper, the input and output are functions defined on 
a 4D domain based on the corresponding function spaces

= = ( )L D , where the 4D domain refers to a 3D 

reservoir with time. 

 




†min [ ( ( ), ( ))]a C a a  (3) 

The complete architecture of the FNO employed in 
this study is illustrated in Figure 2. Following the input of 
the heterogeneous reservoir and injection-production 
parameters, they are passed through a fully connected 
layer P to elevate to a high-dimensional channel space. 
Subsequently, they undergo four iterations of Fourier 
layers from to. Finally, they are transformed to the 
dimension of the output solution via a fully connected 
layer, representing the distribution of important 
properties at each time step. The iterative architecture 
of the FNO described above is represented by Equation 
(4). 
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u x Qv x q

  (4) 

Within each Fourier layer, the input ( )v x is first 

transformed to the Fourier domain using the Fourier 
transform . Then, a linear transformation R is applied 
to filter out high-frequency modes, which enhances the 
network's generalization capability and speed. Next, the 
result is transformed back to the original space using the 

inverse Fourier transform −1 . Meanwhile, the input

 
Fig.1 Permeability and porosity distribution 

diagrams of heterogeneous reservoirs with positive 
rhythm (top) and reverse rhythm (bottom) 

Table 1 The value ranges of each variable 

Variable Ranges 

reservoir gas injection rate, m3/d 20-30 
production pressure differential, MPa 2-4 

porosity field 0.07-0.17 
permeability field, mD 1.98-53.48 

 

 
Fig. 2 Full architecture of FNO 
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( )v x is also linearly transformed by W . The two 

branches are then summed and passed through an 
activation function for nonlinear transformation. 

3.2 Loss function design and training 

We obtain the solution in the 4D spatiotemporal 
domain based on the FNO-4D framework. The model 

input is a 6D tensor  , , , , ,4N X Y Z T , which includes the 

heterogeneous porosity field, heterogeneous 
permeability field, gas injection rate, and production well 
bottom-hole pressure. The model output is a 6D tensor 

 , , , , ,1N X Y Z T , which contains the distribution of 

different properties at different time steps, where N  is 
the number of samples, X, Y, and Z are the grid numbers 
in different directions, and T is the number of time steps 
to be predicted. 

To improve the accuracy and convergence speed of 
the surrogate model predictions, the neural network 
parameters are optimized using the relative loss during 
the training process. The loss function is defined as 
shown in Equation (5), where the first part is the data-

driven loss function dataL , and the second part is the loss 

function partialL that considers the gradient relationships of 

the properties in the X, Y, Z, and T directions in the 

governing equations. Using the 2L loss between the true 

values and predicted values, divided by the 2L norm of the 

true values, can measure the prediction error relative to 
the overall range of the true values, making the loss 
function more stable and having a certain regularization 
effect [10,11].  
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Where u is the true values, û is the predicted values,

/u xd d , ˆ / xud d , /u yd d , ˆ / yud d , /u zd d , ˆ / zud d , /u td d  , 

ˆ / tud d  represent the first-order derivatives of true and 

predicted values in the X, Y, Z, and T directions, 

respectively.x ,y , z andt are hyperparameters. 

The numerical model and surrogate model in this 
study were run on hardware environment consisting of 
Intel Core i7-12700 and NVIDIA GeForce GTX 3090 GPU. 
During the training process, the Adam optimizer was 
utilized along with a cosine annealing learning rate 
schedule to adjust the model parameters. The initial 
learning rate was set to 0.001, and mini-batch training 

was employed with a batch size of 5. The training was 
conducted for 100 epochs. 

4. RESULTS 
Figure 3 presents the training and validation set 

relative loss curves for pressure, CO2 mole fraction, and 
oil saturation distribution based on the FNO framework. 
The R2 scores for the test set at all time steps are 0.967, 
0.989, and 0.973, respectively. 

To provide a more intuitive representation of the 
error distribution in the predictions of the surrogate 
model, taking a positive rhythm heterogeneous reservoir 
and a reverse rhythm heterogeneous reservoir in the test 
set as examples, the simulator calculation results, 
surrogate model prediction results and residuals of 
different attributes at the last time step are plotted, the 
positive rhythm reservoir is shown in Figure 4, and the 
reverse rhythm reservoir is shown in Figure 5. 

  

 

 
Fig. 3 Relative loss of training set and validation set 

for each attribute 

      
Fig.4 Simulator calculation results, surrogate model 
prediction results and residuals of positive rhythm 

reservoir pressure (top), CO2 mole fraction (middle) and 
oil saturation (bottom)  
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5. DISCUSSION 
The relative loss of the model decreases in a similar 

trend on both the training and validation sets, indicating 
that our designed loss function has a good regularization 
effect and avoids overfitting. Through testing, it has been 
found that adding the first-order derivative loss to the 
loss function can make the distribution of predicted 

values smoother. Compared to using only the dataL loss, 

the inclusion of the first-order derivative loss reduces the 
presence of outliers and makes the distribution of 
predicted values more consistent with physical meaning. 
The R2 score of the model on the validation set is close to 
1, indicating that the model based on FNO can accurately 
predict the distribution of properties in the 4D domain 
and exhibits good generalization ability. 

By comparing the simulator calculation results and 
surrogate model predictions for the positive rhythm and 
reverse rhythm heterogeneous reservoir cases at the last 
time step, it can be observed that the error in pressure 
prediction is mainly concentrated around the production 
well bottomhole, where the pressure changes fluctuate 
significantly, posing certain challenges for the model's 
accurate prediction. For the predictions of CO2 mole 
fraction distribution and oil saturation distribution, the 
errors are primarily concentrated in the transition zone 
where the oil and gas interact with the CO2 front. In this 
region, the phase behavior is highly complex due to the 
large number of pseudo-components and the critical 
state of temperature and pressure, where the CO2 

extraction of light oil components makes it difficult for 
the surrogate model to learn the simulator's phase 
behavior rules. 

The fluid model used in this study has a minimum 
miscibility pressure of approximately 25 MPa. All the 
original reservoir pressures in the cases are 22 MPa, 
under which conditions the region near the injection well 
bottomhole can reach miscible displacement, while the 
areas away from the injection and production well 
bottomholes are in the near-miscible displacement 
regime. The distribution of the oil saturation prediction 
errors indicates that the surrogate model has accurately 
learned this characteristic. 

There is no significant difference in the prediction 
accuracy of our model between positive rhythm and 
reverse rhythmic heterogeneous reservoirs, indicating 
that the model accurately learns the differences in gas 
intake at different perforation positions under the 
influence of rhythm. At the same time, the 
characteristics of aggravated CO2 gravity segregation in 
reverse rhythmic reservoirs can also be captured by the 
model. 

The surrogate model takes approximately 209 
seconds on average for each training epoch, while after 
training, it can predict a batch in just 0.005 seconds. In 
contrast, the numerical simulator takes an average of 1.8 
seconds to compute a single case. Additionally, the 
surrogate model is capable of parallel computing, and 
the increase in computational cost with an increase in 
the number of cases is much smaller compared to the 
numerical simulator. Therefore, the surrogate model can 
significantly improve the efficiency of solving 
engineering problems that require a large number of 
repeated model computations.  

6. CONCLUSIONS 
This study establishes a 3D heterogeneous reservoir 

five-spot well pattern CO2 flooding numerical simulation 
surrogate model based on FNO. The model predicts 
pressure, CO2 molar fraction, and oil saturation 
distribution using heterogeneous permeability, porosity 
field, and injection-production parameters. Results 
demonstrate that the surrogate model exhibits high 
prediction accuracy and good generalization ability. Post-
training, the surrogate model achieves a 360-fold 
increase in prediction speed compared to the numerical 
simulator, while also supporting parallel computing, thus 
significantly reducing computational costs in engineering 
problems requiring extensive model computations. 

Furthermore, the surrogate model we established is 
based on the 4D domain for prediction, which can 

      
Fig.5 Simulator calculation results, surrogate model 
prediction results and residuals of reverse rhythm 

reservoir pressure (top), CO2 mole fraction (middle) and 
oil saturation (bottom)  
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accurately capture the differences in the distribution of 
various attributes in different perforation layers under 
the influence of rhythms and gravity, which greatly 
increases the applicability of the model. The work in this 
paper can assist engineers in making quick decisions and 
has certain application prospects in engineering tasks 
such as rapid site selection of CO2 injection pilot areas in 
heterogeneous 3D reservoirs, optimization of injection-
production parameters, and determination of the 
migration direction of the CO2 gas injection front. 
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