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ABSTRACT

There has been an increase in the adoption of electric

vehicles (EVs) due to growing environmental concerns,

technological advancements, and supportive govern-

ment policies. This rapid increase in EVs necessitates

energy providers to procure sufficient power to meet

the charging demands. However, uncertainties in EV us-

age due to variable driving patterns and charging pref-

erences make it challenging for energy providers to pre-

dict the charging demand. To address these uncertain-

ties, energy providers can use stochastic models and

trade in multiple short-term electricity markets. More-

over, when smart charging, energy providers can use the

EV flexibility to charge the vehicles during lower mar-

ket price periods, reducing procurement costs. Despite

these strategies, there is a time lag between trading and

delivery during which users could change their EV us-

age patterns, leading to new user requirements during

delivery. This update in the user requirements creates

discrepancies between procured and updated power

needs, causing imbalances. Our study analyzes whether

EVs possess enough flexibility to overcome their uncer-

tainties, satisfy user energy requirements, and reduce

imbalance costs. We develop a two-step approach:

1) procuring energy in the day-ahead market and 2)

rescheduling across each EV to meet updated require-

ments. We test three rescheduling strategies across

51 scenarios, reflecting the updated user requirements.

Our findings reveal that, despite uncertainties, EVs have

enough flexibility to meet user needs and reduce imbal-

ance costs, with the potential for additional revenues.

Keywords: Smart charging, Electric vehicle flexibility,

Optimization, Day-ahead market, Imbalance costs

NOMENCLATURE

Abbreviations

DA day-ahead

EV electric vehicle

reBAP imbalance price

1. INTRODUCTION

In recent years, there has been a surge in the adop-

tion of electric vehicles (EVs) [1]. This growth is ex-

pected to continue, compelling energy providers to

meet the escalating power demands of EV charging.

Typically, energy providers can use EV demand forecasts

based on historical driving and charging patterns to help

them better predict the demand and procure the power

required to satisfy the charging demand [2].

However, diverse driving patterns and charging pref-

erences create uncertainties in EV usage, posing chal-

lenges to energy providers [3]. Factors such as EV user

trip distances, parking durations, arrival and departure

times, and energy requirements contribute to these un-

certainties, making accurate prediction difficult for the

energy providers [4, 5]. To address these challenges, en-

ergy providers can utilize Monte Carlo simulation mod-

els based on probability functions [6, 7] orMarkov chain

models [8]. Thesemodelling techniques enable the rep-

resentation of stochastic EV usage patterns and facili-

tate better estimation of charging demand.

Furthermore, the actual charging duration of EVs is

often less than their plugin duration, especially in the

case of residential charging, which is the focus of this pa-

per. This makes EV charging temporally flexible [9]. This

temporal flexibility allows the energy providers to con-

trol and adjust the EV charging schedule within a spe-

cific period [10, 11]. Thus, when smart charging energy

providers can leverage the flexibility provided by EVs to

minimize their procurement costs by scheduling the EV

charging when the market prices are lower [12, 13].

To handle the EV uncertainties while trading in day-

ahead (DA) market, energy providers can use stochastic

optimization models [14]. These models aim to mini-

mize the expected costs while satisfying user require-

ments. Authors in [15] developed a stochastic optimiza-

tion model with the objective to minimize the energy

provider’s expected cost in DA market. Within the op-

timization model, they considered the EV uncertainties

by modelling different demand scenarios. Additionally,

authors in [16, 14] include risk measures such as condi-

tional value at risk (CVar) in their stochasticmodels. The

inclusion of risk measures to mitigate the financial risks
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incurred due EV uncertainty while trading in DAmarket.

Two-stage optimization models enable energy

providers to optimize the EV charging in both DA and

intraday markets [17]. The first-stage decisions usually

correspond to DA market scheduling to minimize the

costs of the energy provider. The second-stage deci-

sions usually correspond to intraday markets where the

objective function is to reduce the power imbalances

and minimize the energy provider’s costs [18]. Further-

more, authors in [19] developed a sequential trading

strategy to trade in both DA and intraday markets. They

developed a rolling window optimization model to deal

with uncertainties while trading in the intraday market.

While the above studies effectively handle uncertain-

ties by integrating them into their models and trading

in multiple markets, a time lag exists between trading

and the delivery period. During this interval, the ini-

tial user requirements predicted during the trading time

may change; for instance, users may update their plu-

gin duration and energy requests. This update in user

requirements would lead to discrepancies between the

procured power while trading and the updated power

demand during delivery time, causing imbalances. In

Europe, energy providers must settle these imbalances

in the imbalance market and pay additional costs. How-

ever, if EVs possess sufficient flexibility, energy providers

can reschedule the allocated power to each EV to meet

the updated EV requirements and reduce imbalance

costs. Therefore, our research paper aims to answer the

following research questions:

RQ 1) To what extent can energy providers use the EV

flexibility to satisfy the updated energy require-

ments at delivery time?

RQ 2) Do EVs possess enough flexibility to reduce the

energy provider’s overall imbalance costs?

To answer the above research questions, we develop

a two-step optimization approach. In the first step, we

procure the aggregated power required for EV charg-

ing from the DA market using the initial user require-

ments. We develop a linear optimization model to facil-

itate trading in DAmarket to minimize the procurement

costs. In the second step, we update the user require-

ments and reschedule the power allocated to each EV.

We use three rescheduling strategies and evaluate the

imbalance costs for each strategy. In the first strategy,

we assume that the energy provider tries to satisfy the

updated energy requirements by reallocating the power

to each EV using the aggregated power from DA mar-

ket. In this strategy, the energy provider settles in the

imbalance market only if they have excess power. In

the second strategy, the energy provider settles all the

imbalances in the imbalance market to satisfy the up-

dated energy requirements whileminimizing the overall

imbalance volume. The third strategy is similar to the

second, but we minimize the energy provider’s overall

imbalance costs in this strategy.

2. METHODS

Figure 1 gives an overview of our two-step opti-

mization approach. The first step is related to the DA

scheduling based on initial user requirements, where

the energy provider procures the aggregated power re-

quired for EV charging while trading in DA market. Sec-

tion 2.1 presents our optimization model and relevant

data required for trading in DAmarket. The second part
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Fig. 1 Overview of our two-step optimization approach.

relates to rescheduling, where the energy provider allo-

cates the power to each EV based on the updated user

requirements using three strategies for which we de-

velop three optimization models. Section 2.2 presents

the optimization models and relevant data required to

reschedule the power allocated to each EV.

2.1 Day-ahead market optimization model

We develop a linear optimization model to minimize

energy provider’s procurement costs incurred for charg-

ing the EV fleet while trading in DA market. The input

data for our optimization model are DA market prices

(CDA
t ), EV specifications and user requirements. The EV

specifications include the maximum charging power of

each EV (Pmax
v ) and maximum battery capacity (Emax

v ).

The user requirements include plugin duration (tpluginv )

and energy level requested at departure (Edep,DA
v ). We

assume perfect foresight of DA prices in line with [20].

Our objective function aims to minimize the energy

provider’s DA procurement costs (see Equation 1). The

objective function considers the variableP agg,DA
t andpa-

rameterCDA
t , which are the aggregated power procured

from DAmarket for charging the EVs and the DA price at

time t, respectively.

min
∑
t

CDA
t × P agg,DA

t ×∆t (1)

The aggregated power procured from DA market

(P agg,DA
t ) should be equal to the power allocated to each

EV while trading in DA market (P DA
t,v ) and this is ensured

by Equation (2).
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∑
v

(
P DA
t,v

)
= P agg,DA

t ∀t (2)

Since P DA
t,v is the power with which each vehicle is

charged, its value should always be within the limits of

themaximumcharging capacity of the EV. Thus, the con-

straint in Equation (3) ensures thatP DA
t,v value is between

0 and Pmax
v during the plugin duration.

0 ≤ P DA
t,v ≤ Pmax

v for t ∈ tpluginv ∀v (3)

EDA
t,v is the energy level of the vehicle at time t, and

it should be within the battery capacity limits, which is

ensured by Equation (4).

0 ≤ EDA
t,v ≤ Emax

v for t ∈ tpluginv ∀v (4)

The constraints in Equations (5), (6), and (7) ensure

the energy balance of EVs at the time of arrival (tarrv ),

throughout the plugin duration (tpluginv ) and at the time

of departure (tdepv ).

EDA
t,v gives the energy level of an EV at timestep t,

Earr,DA
v is the energy level of an EV at tarrv which we ob-

tain from user input,EDA
t−1,v gives the energy level of an

EV at previous timestep, ηch is the charging efficiency,

Edep,DA
v is the energy level of EV at tdepv .

EDA
t,v = Earr,DA

v for t = tarrv ∀v (5)

EDA
t,v = EDA

t−1,v + ηch · P DA
t,v ·∆t for t ∈ tpluginv ∀v

(6)

EDA
t,v = Edep,DA

v for t = tdepv ∀v (7)

2.2 Rescheduling optimization model

Trading in the DAmarket occurs up to 36 hours before

energy delivery, in our case, before EV charging. During

the time between trading and delivery, the users might

change their arrival time, departure time and energy

level requested at departure. This update in the user re-

quirementswouldmean that theremight be amismatch

between the procured power from DA markets (aggre-

gated DA power schedule) and updated power needs

for charging, causing imbalances. The energy providers

can reschedule the power allocated to each EV to ad-

dress these imbalances. In our paper, we propose three

rescheduling strategies for energy providers:

• First strategy: uses the same aggregated DA sched-

ule to satisfy the updated user requirements with-

out settling in the imbalancemarket. We reallocate

the power to each EV to minimize the deviation

between their updated energy level requirement

at departure and the actual energy level resulting

from the updated power we allocate to each EV.

• Second strategy: settling the imbalances in the im-

balancemarket to satisfy the updated user require-

ments while minimizing the imbalance volume. By

doing this, we change the aggregatedpower sched-

ule at delivery (updated power schedule), ensuring

we meet the updated energy requirements.

• Third strategy: settling the imbalances in the im-

balancemarket to satisfy the updated user require-

ments while minimizing the imbalance costs. By

doing this, we change the aggregatedpower sched-

ule at delivery time (updated power schedule), en-

suring we meet the updated energy requirement.

The following subsections will describe each of the

strategies in more detail.

2.2.1 First strategy: Minimizing energy deviation

In the first strategy, we assume that energy providers

reschedule the power allocated to each EV using the

same aggregated power procured from DA market. In-

stead of procuring additional power from the imbalance

market, the energy provider reallocates the power to

each EV to reduce the deviation of the energy level re-

quested by EV users at departures. Thus, the objective

of the energy provider is to minimize the sum of the dif-

ference between the updated energy level request of

the user at the departure (Edep,R
v ) and the actual en-

ergy level of the user at departure time after the deliv-

ery (Ẽdep,R
v ) for all vehicles. Equation (8) represents the

mathematical formulation of the objective function.

min
∑
v

(
Edep,R

v − Ẽdep,R
v

)
(8)

The constraint in the Equation (9) ensures that the

sum of the updated power allocated to each EV (P R
t,v)

is equal to the updated aggregated power schedule

(P agg,R
t ). ∑

v

(
P R
t,v

)
= P agg,R

t ∀t (9)

In this strategy, energy providers use the same DA ag-

gregated power schedule tomeet users updated energy

requirements by utilizing the flexibility provided by EVs.

Ideally, if all the updated energy requirements are sat-

isfied, P agg,R
t should equal P agg,DA

t . However, with up-

dated requirements, P agg,R
t might be higher or lower

than P agg,DA
t . Since we assume that the energy provider

does not procure additional power from the imbalance

market,P agg,R
t can never exceedP agg,DA

t . Instead,P agg,R
t

can be less than P agg,DA
t to ensure feasibility if the over-

all P agg,R
t needed is less than the overall P agg,DA

t . When

P agg,R
t is less than P agg,DA

t , the energy provider settles

the excess power in the imbalance market. Equation

(10) ensures the power balance between P agg,R
t and

P agg,DA
t .
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P agg,R
t ≤ P agg,DA

t ∀t (10)

Furthermore, the objective function is subject to up-

dated constraints given by (11), (12), (13), (14), and (15).

0 ≤ P R
t,v ≤ Pmax

v for t ∈ tpluginv ∀v (11)

0 ≤ ER
t,v ≤ Emax

v for t ∈ tpluginv ∀v (12)

ER
t,v = Earr,DA

v for t = tarrv ∀v
(13)

ER
t,v = ER

t−1,v + ηch · P DA
t,v ·∆t for t ∈ tpluginv ∀v

(14)

ER
t,v ≤ Edep,R

v for t = tdepv ∀v
(15)

The only major difference compared to DA optimiza-

tion model is the energy balance equation at tdepv that

is relaxed. We depict this using Equation (15). This con-

straint ensures that the actual energy level at departure

can be less than the requested one.

ER
t,v = Ẽdep,R

v for t = tdepv ∀v (16)

The Equation (16) gives the mathematical represen-

tation of howwe calculate the actual energy level at de-

parture (Ẽdep,R
v ), which is also the decision variable of

the objective function (see Equation 8)

2.2.2 Second strategy: Minimize power deviation

In this strategy, we assume that the energy provider

settles all the imbalances in the imbalance market and

reallocates the power to each EV. While doing so, the

energy provider tries to reduce the imbalance volumes

whilst satisfying the user requirements. Accordingly, we

formulate our objective function in Equation (17), which

is to minimize the sum of the absolute power differ-

ence between the updated aggregated power schedule

(P agg,R
t ) and aggregated DA power schedule (P agg,DA

t ).

min
∑
t

∣∣∣P agg,R
t − P agg,DA

t

∣∣∣ (17)

We can observe that the objective function (Equa-

tion (17)) is non-linear as we are minimizing an abso-

lute value. To make the objective function linear, we

introduce an auxiliary variable for each time t denoted
by zt and additional constraints formulated in Equations

(19) and (20). Accordingly, we present the modified op-

timization problem with an updated objective function

in Equation (18) to minimize the sum of variable zt.

min
∑
t

zt (18)

The constraints (refer to Equations (19) and (20)) en-

sure that zt is at least as large as the absolute value of

the expression inside.

zt ≥
(
P agg,R
t − P agg,DA

t

)
∀t (19)

zt ≥ −
(
P agg,R
t − P agg,DA

t

)
∀t (20)

The objective function is subject to the same con-

straints as the first strategy (refer to Section 2.2.1) given

by Equations (9), (11), (12), (13), and (14). However, the

constraint in Equation (21) is different compared to the

first strategy as the energy provider must ensure that

they satisfy the EV user’s energy requirements.

ER
t,v = Edep,R

v for t = tdepv ∀v (21)

2.2.3 Third strategy: Minimizing imbalance costs

In the third strategy, we assume that the energy

provider has perfect foresight of imbalance prices and

aims to reduce the imbalance costs. Accordingly, our

objective function (refer to Equation 22) is to minimize

the energy provider’s imbalance costs when settling in

the imbalance market.

min
∑
t

(
P agg,R
t − P agg,DA

t

)
× CreBAP

t ×∆t (22)

The objective function is subject to the same con-

straints as in the second strategy (refer to Section 2.2.2),

given by Equations (9), (11), (12), (13), (14), and (21).

3. DATA AND SIMULATION SETUP

3.1 Mobility data

We use existing synthetic mobility data to derive the

user requirements for each EV [21]. The synthetic mo-

bility data stems from a German mobility survey [22].

The mobility data consists of 200 unique mobility pro-

files of residential EVs. We analyze only the home charg-

ing case with the following assumptions:

• All vehicles are always plugged in when parked at

home.

• All vehicles are charged until they reach Emax
v , or

the maximum energy level they can reach when

the users plugin their vehicle.

• The battery capacity of all vehicles is 75 kWh

• We consider a Level 2 charger with a mean power

rating of 7.4 kW and charging efficiency (η) of 95%,
typically used for home charging [23].

We divide the mobility dataset, containing individual

profiles for the entire fleet of 200 EVs over one year,

into weekly datasets. This results in 52 datasets com-

prising the individual mobility profiles for the entire EV

fleet over one week each. Out of the 52 new datasets,

we use one dataset to reflect the predicted (initial) user

requirements while trading in DA market, and we use
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the other 51 datasets to reflect the change in user re-

quirements and to test our rescheduling strategies for

each of the 51 datasets separately.

3.2 Market data

We use the German DA market’s one week’s price

data from January 2024 for trading in DA [24]. The re-

sulting price data is from 15th January 2024 to 21st Jan-

uary 2024. We obtain imbalance price (reBAP) prices

from ENTSOE-E Transparency Platform [25] for the same

period as that of DA market data. We calculate the im-

balance costs for all strategies ex-post using the reBAP

price data. Equation (23) gives the formula we use to

calculate the total imbalance costs for each reschedul-

ing trading strategy.

∑
t

(
P agg,R
t − P agg,DA

t

)
× CreBAP

t ×∆t (23)

4. RESULTS AND DISCUSSION

In this section, we present the results to answer our

research questions. Section 4.1 presents the aggregated

power schedule resulting from the DA optimization and

updated aggregated power schedules resulting from the

three rescheduling strategies. In Section 4.2, we com-

pare the three strategies by calculating the energy de-

viation incurred for the EVs across all the charging ses-

sions. Section 4.3 compares the three strategies, calcu-

lating the imbalance costs incurred while settling in the

imbalance market.

4.1 Aggregated EV schedules

Wefirst present the aggregated power schedule from

the DA optimization. To illustrate our rescheduling pro-

cess, we plot the updated aggregated power schedules

from our three strategies and compare them with the

DA aggregated power schedule. We present the ag-

gregated power schedules for a single day: January 18,

2024.

Figure 2 presents the aggregated DA power sched-

ule (P agg,DA
t ) based on DA market optimization (refer to

Section 2.1) and DA market prices (CDA
t ). As the objec-

tive of the DAmarket optimization model is to minimize

the overall costs, it tries to procure the power when

prices are lower. Therefore, we can observe thatmost of

the power procured for EV is between 02:00 and 04:00

when the prices are lower.

Figure 3 presents two aggregated power schedules -

P agg,DA
t and P agg,R1

t . P agg,R1
t is the updated aggregated

power schedule based on the first strategy (refer to Sec-

tion 2.2.1). We can observe that both power schedules

are overlapping each other, indicating thatP agg,R1
t is the

same as that ofP agg,DA
t . This is because, in the first strat-

egy, the model tries to allocate the power to each EV

while still using the P agg,DA
t .

Figure 4 presents two aggregated power schedules -
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Fig. 2 Day-ahead schedule on 18th Jan 2024.
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Jan 2024.

P agg,DA
t and P agg,R2

t . P agg,R2
t is the updated aggregated

power schedule based on the second strategy (refer to

Section 2.2.2). The objective of the second strategy is

to minimize the power deviation. Therefore, we can

observe that P agg,R2
t profile is very similar to P agg,DA

t

albeit, there are few instances where the magnitude

of P agg,R2
t is different to that of P agg,DA

t to account for

imbalances caused due to the change in user require-

ments. One instance where the imbalance occurs is

around 05:00. This is a negative imbalance since the

P agg,R2
t value is higher than that of P agg,DA

t during this

instance (at 05:00), which means the energy provider

has to procuremore power to satisfy the users’ updated

energy requirements.

Figure 5 presents the results for the third strategy (re-

fer to Section 2.2.3). In the figure, we present P agg,DA
t ,

P agg,R3 - the updated aggregated power schedule based

on the third rescheduling strategy, and imbalance prices

(CreBAP
t ). We can observe that P agg,R3 is quite differ-

ent from P agg,DA. The difference is because the third

rescheduling strategy aims to minimize the imbalance

costs. Therefore, the model utilizes the EV flexibility to

create a negative imbalance when the imbalance prices

are lower and procure the power from the imbalance

market, and create a positive imbalance when the im-
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Fig. 4 Updated schedule based on second strategy on

18th Jan 2024.

balance prices are high and sell the imbalance power to

the market. A few instances where we can observe in-

stances of negative imbalance are around 02:00, 04:00

and 23:00. One instance of positive imbalance is around

03:00.
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18th Jan 2024.

4.2 Deviation in requested energy

The energy level deviation gives the difference be-

tween the updated energy level requested by users and

the actual energy level that EVs have at the departure

time after the rescheduling. Figure 6 shows the his-

togram of energy level deviations for all EVs at depar-

ture time in all 51 scenarios over one week for the first

trading strategy. The x-axis represents the energy level

deviation of each EV in kWh, and the y-axis represents

the percentage of occurrences. We limit the x-axis data

to 25 kWh to better illustrate the distribution of val-

ues. From the figure, we observe that in about 85% of

cases, the energy level deviation is zero; for the remain-

ing 15%, the deviation is spread from 1 kWh to 60 kWh,

most of which are under 15 kWh. These results indicate

that using the first strategy, the energy providers could

satisfy the energy requirements of users for about 85%

of the cases.
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Fig. 6 Energy level deviation across all scenarios.

The energy level deviation for all EVs across all sce-

narios in the second and third strategies is equal to zero.

The value is zero because themodel allocates the power

to each EV in a way that satisfies the user requirements,

which means that the actual energy level is equal to the

updated energy level requested by the user.

In the first strategy, energy deviations primarily occur

in scenarios where overall energy requirements signifi-

cantly exceed the anticipated levels during DA trading,

resulting in insufficient power to meet the demand. In

our study, we assume that all EVswould be charged until

they reach theirmaximumbattery capacity, which trans-

lates to EV users requesting 100%battery capacity at the

time of departure. Often, EV users do not need 100% of

their battery for their daily driving needs. For example,

the average daily distance in Germany is around 33 km,

which requires approximately 9% of the total battery ca-

pacity for a vehicle with a 75 kWh battery. In the 15% of

instanceswhere the updated energy requirementswere

not satisfied, the energy deviation is less than 15 kWh

for most instances. The 15 kWh deviation implies that

their battery percentage is at least 80%, which is suffi-

cient formost of the trips and thusmight not hinder user

comfort in terms of their driving needs.

4.3 Imbalance costs

Figure 7 depicts the distribution of imbalance costs

incurred across all scenarios for each rescheduling strat-

egy. In the first strategy, the imbalance costs vary from

around -71 to 0 EUR for a week across all scenarios. The

imbalance costs are negative because, in the first strat-

egy, the model uses EV flexibility and tries to reallocate

the power to each EV based on DA. In case of potential

imbalance, the energy provider only settles in the imbal-

ancewhen there is a positive imbalance, i.e., aggregated

DA power is higher than updated aggregated power. As

most imbalance prices are positive, the overall imbal-

ance cost is negative (refer to the formula in Equation

23).

In the second strategy, the imbalance costs vary from

around -50 EUR to 200 EUR for one week across all sce-
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Fig. 7 Distribution of imbalance costs for each strategy.

narios, with a median value of around 60 EUR. Though

the model tries to use the EV flexibility to minimize

the power deviation from the aggregated DA power

schedule while rescheduling, there could be several in-

stances where there is a positive or negative imbal-

ance. The positive imbalance occurs when the aggre-

gated rescheduled power is less than the aggregated DA

power. During the positive imbalance period, the en-

ergy provider settles (sells) the excess power in the im-

balance market. If the price during the positive imbal-

ance period is positive, the imbalance cost is negative

(the provider makes revenue); else, the imbalance cost

is positive (refer to the formula in Equation (23)).

The negative imbalance occurs if the aggregated

rescheduled power exceeds the aggregated DA power.

During the negative imbalance period, the energy

provider settles (buys) the excess power in the imbal-

ance market. If the price during the negative imbalance

period is positive, the imbalance cost is positive; else,

the imbalance cost is negative (the provider makes rev-

enue) (refer to the formula in Equation (23)).

Therefore, overall imbalance costs are negative in

some scenarios because there are more periods with

a combination of positive imbalance and negative price

and/or negative imbalance and positive price. Similarly,

overall imbalance costs are negative in some scenar-

ios because there are more periods with a combination

of positive imbalance and positive price and/or nega-

tive imbalance and negative price. Therefore, creating a

positive imbalance by procuringmore power in DA does

not always create revenues.

In the third strategy, the imbalance costs are negative,

ranging from -850 EUR to -750 EUR, with amedian value

of -780 EUR. This strategy assumes perfect foresight of

imbalance prices, allowing the model to utilize the flex-

ibility provided by EVs to create positive and negative

imbalances during periods that minimize costs. Conse-

quently, the imbalance costs are negative in all scenar-

ios.

However, the third strategy is purely theoretical since

providers cannot predict imbalance prices upfront and

thus cannot reschedule power to EVs to generate such

revenues. These results highlight that advanced knowl-

edge of imbalance prices could help minimize overall

imbalance costs. However, this strategy illustrates that

energy providers can harness EV flexibility to provide

balancing energy services to system operators, helping

tominimize overall system imbalances and generate ad-

ditional revenues for suppliers or EV owners. This is be-

cause balancing energy prices is used to establish imbal-

ance prices in the first place.

4.4 Discussion

Using the first strategy, energy providers could meet

most users’ energy needs. There is a risk that theymight

not fully satisfy the user’s energy requirement, reduc-

ing the charging reliability and impacting user comfort

regarding their driving needs. Suppose users offer more

flexibility by reducing their energy requirements. In that

case, energy providers can allocate power in a way that

ensures all EVs have enough energy to complete their

next trip without significantly impacting user comfort.

In caseswhere there is still a high deviation between the

energy levels at departure for the EVs, causing substan-

tial discomfort and preventing users frommeeting their

driving needs, the energy provider can then resort to the

second strategy. The second strategy involves settling

the imbalances through the imbalance markets to meet

the user’s energy requirements. Thus, using the sec-

ond strategy would not impact the user’s comfort and

charging reliability as theywould have the requested en-

ergy by the end of the charging session. Furthermore,

though the third strategy is impractical to implement di-

rectly, it illustrates that EVs possess enough flexibility

to provide balancing energy services to system opera-

tors, helping to minimize overall system imbalances and

generate additional revenues for energy providers or EV

owners.

In our study, we recognize several limitations that

highlight opportunities for future research. We used

price data for one week to test our strategies and cal-

culate the imbalance costs. We could extend our study

for longer periods, allowing us to capture the seasonal

effects. From the wholesale market model perspective,

we only considered DA market because it is more liq-

uid than the intraday market. However, for future work,

we can also consider trading in the intraday market,

where trading goes on until a few minutes before de-

livery, and analyze if trading multiple markets would re-

duce the imbalance costs. However, these limitations

will not significantly impact our overall result, which is

that despite uncertainties, EVs possess enough flexibil-

ity to meet user requirements and reduce imbalance

costs.

7



5. CONCLUSION

Our paper analyzed if EVs possess enough flexibil-

ity to overcome the uncertainties arising due to vari-

able EV usage, satisfy the user requirements, and re-

duce the energy provider’s imbalance costs. We pro-

posed a two-step scheduling approach. The first step

relates to DA scheduling, where we developed a linear

optimization model to procure the power required for

EV charging based on the predicted initial user require-

ments while minimizing the energy provider’s procure-

ment costs. The second step relates to rescheduling,

where we proposed three strategies to reallocate the

power allocated to each EV to satisfy their updated user

requirements. The first strategy reallocated power to

EVs without settling in the imbalance market, minimiz-

ing deviation from updated energy requirements. The

second strategyminimized imbalance volume by adjust-

ing the aggregated power schedule at delivery. The third

strategy focused onminimizing imbalance costs and ad-

justing the power schedule to meet updated energy re-

quirements.

Our analysis demonstrated that energy providers

could meet most of the users’ energy needs by leverag-

ing EV flexibility. Additionally, we found that providers

could minimize user impact and imbalance costs by

adjusting power allocation and utilizing the imbalance

markets. Although the third strategy assumed perfect

foresight of imbalance prices and was impractical for di-

rect use, it illustrated that EVs possessed enough flex-

ibility to provide balancing energy services, minimize

system imbalances, and generate additional revenue.

These findings highlighted the potential of EV flexibility

to overcome their own uncertainties and use this flex-

ibility to satisfy user energy requirements and reduce

imbalance costs - potentially generating additional rev-

enues.
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