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ABSTRACT 
 With the depletion of non-renewable energy, 
renewable energy such as wind energy has received 
more and more attention. Wind speed prediction plays 
an important role in promoting the utilization of wind 
energy. This paper focuses on how to realize the wind 
speed ensemble prediction at multiple stations. First, 
convolutional neural networks are introduced to wind 
speed prediction because of its ability to mine input 
features. Then, the dropout mechanism is incorporated 
into the model so that multiple runs can obtain multiple 
predictions. Next, the kernel density estimation method 
is used to obtain the probability density function of wind 
speed prediction. At the same time, in order to complete 
the multi-station wind speed prediction at the same 
time, the four-dimensional input-output structure tensor 
is proposed for wind speed prediction. Finally, the model 
proposed in this study is verified on two datasets of 
Tibet, China. The experimental results show that: (1) The 
model proposed in this study can obtain high-accuracy 
deterministic prediction results and appropriate 
ensemble prediction intervals. (2) The appropriate 
dropout ratio is important to neither overfit nor reduce 
the prediction accuracy. 
 
Keywords: wind speed, ensemble forecasting, 
Convolutional neural network, dropout, Kernel density 
estimation 

NONMENCLATURE 

Abbreviations  
CNN Convolutional neural network 

ConvLSTM 
Convolutional Long Short-Term 
Memory Network 

ConvGRU Convolutional Gated Recurrent Unit 
KDE Kernel density estimation 
PDF Probability density function 
R2 deterministic coefficient 
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MAE mean of absolute error 
RMSE root mean square error 
CRPS continuous ranked probability score 

Symbols  
 x input  

w weight 
b bias 
y predictions 

1. INTRODUCTION 
The randomness, volatility and uncertainty of wind 

speed increase the difficulty of wind speed prediction [1]. 
Wind speed prediction methods can be generally divided 
into three categories: physical-mechanism-driven 
methods, data-driven methods, and hybrid methods [2]. 
Physical mechanism-driven methods use mathematical 
physics equations to simulate and predict wind speed 
processes, such as numerical weather prediction [3]. Liu 
et al. proposed a method combining series-wise 
mechanism, temporal lag attention and numerical 
weather prediction for wind speed prediction and 
improved the accuracy [4]. Data-driven methods predict 
wind speed by mining the relationship between 
meteorological factors and wind speed, such as 
statistical models, machine learning and deep learning 
models [5]. Considering wind speed characteristics, 
Zhang et al used empirical mode decomposition and 
autoregressive moving average model to complete wind 
speed prediction, and the prediction results can lay a 
foundation for power grid dispatching [6]. Moreno et al. 
enhanced wind speed prediction through the synergistic 
effect of machine learning, singular spectrum analysis, 
and variational mode decomposition [7]. Zhang et al. 
obtained probabilistic forecasting results of wind speed 
by combining a shared weighted long-short term 
memory network with a Gaussian process regression 
model [8]. The hybrid method combines the advantages 
of multiple models to obtain more accurate wind speed 
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prediction results. Lv and Wang proposed a hybrid model 
combined deep learning, time series decomposition and 
multi-objective parameter optimization for wind speed 
forecasting [9]. Chen et al. employed multi-resolution 
feature fusion and frequency information mining for 
multi-step short-term wind speed predictions [10]. 

Most of the existing studies focus on the wind speed 
prediction of a single station, but few studies have 
completed the prediction of multiple stations at the 
same time. Considering that there are always errors in 
prediction, it is also a research hotspot to quantify the 
uncertainty of prediction by implementing ensemble 
prediction [11]. Therefore, this paper focuses on how to 
achieve multi-station wind speed ensemble forecast. 

In this study, an ensemble forecasting framework 
combining convolutional neural network (CNN), dropout 
mechanism, and kernel density estimation (KDE) method 
is proposed for multi-station wind speed prediction. The 
remaining sections of this paper are as follows: the 
forecasting framework is introduced in Section 2. The 
forecasting metrics are described in Section 3. A case 
study is completed in Section 4. The conclusions are 
summarized in Section 5. 

2. ENSEMBLE WIND SPEED FORECASTING 
FRAMEWORK  

2.1  Convolutional neural network 

Convolution neural network have a strong ability to 
mine input features through convolutional operations. 
The process of convolution is shown in Fig. 1, and its 
output can be calculated as follows:  
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2.2 Dropout mechanism 

Dropout is an important technique for neural 
network to avoid overfitting. During each batch training 
process, the neural network nodes are temporarily 
discarded from the network with a certain probability, 
which reduces the training time of the model on the one 
hand and avoids overfitting on the other hand. Since 
each batch of network nodes is randomly discarded, the 
model cannot arbitrarily fit all the random noises in the 
training set during the training process. The schematic 
diagram of the dropout mechanism is shown in Fig. 2. 
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（a）Without dropout mechanism

（b）With dropout mechanism
 

Fig. 2 Dropout mechanism 

The dropout mechanism continues to be retained 
during the prediction process, and part of the network 
nodes are still randomly dropped during each prediction, 
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Fig. 1 Convolutional neural network 
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so that each prediction result has a slight difference. 
Multiple prediction results in ensemble forecasting can 
be obtained by running the prediction process several 
times. 

2.3 Kernel density estimation 

Kernel density estimation (KDE) method does not 
need the prior knowledge of the data distribution to be 
estimated, and does not attach any assumptions to the 
data distribution. It is a non-parametric estimation 
method to study the data distribution characteristics 
from the data sample itself. 

Assuming that the M prediction results 
( ,1 ,2 ,[y ,y , ,y ]t t t M ) are obtained by CNN and dropout, its 

probability density function (PDF) is estimated as 
follows: 

1
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where ˆ ( )tf y  is the PDF of the prediction for the t-th 

period. B  is the band width. K  is the kernel function 
and the Epanechnikov function is usually used. 

2.4 Ensemble forecasting framework 

A framework for multi-station wind speed ensemble 
forecasting is proposed in this study, as shown in Fig. 3. 
In the training part, the input layer is arranged into a 4-d 
tensor ( [ , , , ]T M N Q ), where M  and N  are rows and 

columns of the spatial station, T is the number of 
historical periods, and Q is the number of input factors. 
Three convolutional neural network layers are 
considered in the hidden layer, and dropout layers are 
added between the convolutional neural network layers. 
The output layer is the wind speed prediction results for 
multiple stations. In the prediction part, multiple 
prediction results are obtained by running the prediction 
process several times, and then the probability density 
function is obtained by using the KDE method. 

3. FORECASTING METRICS 
The deterministic coefficient (R2), the mean of 

absolute error (MAE), the root mean square error (RMSE) 
[12] are used to evaluate deterministic prediction 
accuracy. The continuous ranked probability score 
(CRPS) [13] is used to evaluate the ensemble forecasting 
comprehensive performance. 

4. CASE STUDY 

4.1 Research object and data 

The study area is located in Tibet, China, with 
longitude varying from 81.45°E to 83.15°E and latitude 
from 31.55°N to 32.85°N, which covers 16 wind stations. 
Two datasets for 2014 are used, and one period is 1 hour. 

4.2 Results and discussion 

4.2.1 Comparison of forecasting metrics  

Convolutional Long Short-Term Memory Network 
(ConvLSTM) and Convolutional Gated Recurrent Unit 
Network (ConvGRU) are used to compared with CNN, 
and these models (CNN-D, ConvLSTM-D, ConvGRU-D) 
combine dropout mechanisms (dropout ratio = 0.05) to 
complete ensemble forecasting. 

The forecasting metrics of dataset 1 and dataset 2 
are shown in Table. 1 and Table. 2, respectively. In 
dataset 1, R2 of CNN-D is 0.972, the largest among the 
three models, and MAE and RMSE are 0.177m/s and 
0.232m/s, respectively, the smallest among the three 
models, indicating that CNN-D model has the highest 
prediction accuracy. The CRPS of CNN-D is 0.112, which 
is the smallest among the three models, indicating that 
CNN-D model has the best ensemble prediction 
performance. The analysis for the metrics of dataset 2 
are similar to dataset 1. 

Table. 1 Forecasting metrics of dataset 1 

model R2 MAE RMSE CRPS 

CNN-D 0.972  0.177  0.232  0.112  

ConvLSTM-D 0.968  0.192  0.250  0.116  

ConvGRU-D 0.959  0.230  0.282  0.124  
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Fig. 3 Ensemble forecasting framework 
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Fig. 4 Predictions of station 11 on dataset 1 

 
(a) observations                         (b) predictions of CNN-D 

 
   (c) predictions of ConvLSTM-D                     (d) predictions of ConvGRU-D 

Fig. 5 Predictions of 142-nd period on validation set 2 
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Table. 2 Forecasting metrics of dataset 2 

model R2 MAE RMSE CRPS 

CNN-D 0.976  0.145  0.199  0.077  

ConvLSTM-D 0.974  0.153  0.209  0.081  

ConvGRU-D 0.973  0.160  0.210  0.079  

4.2.2 Comparison of prediction results 

Taking station 11 of dataset 1 as an example, the 
predictions of the three models and observations are 
drawn in Fig. 4. It can be intuitively seen that the 
predictions of the CNN-D model are closest to the 
observations, indicating that the CNN-D model has the 
highest prediction accuracy. At the same time, the 
prediction interval of CNN-D model is wide in the period 
with large prediction error, and narrow in the period with 
small error, indicating that the ensemble prediction 
interval of CNN-D model is suitable. 
4.2.3 Prediction results of multiple stations 

Taking the 142nd period of validation set 2 as an 
example, the multi-station prediction results and 
observations are plotted in Fig. 5. It can also be intuitively 
seen that the multi-station wind speed prediction 
distribution of CNN-D model is closest to the distribution 
of observations, indicating that CNN-D model has the 
highest prediction accuracy. 
4.2.4 dropout ratio analysis 

By changing the dropout ratio from 0 to 0.6 in steps 
of 0.05, the prediction accuracy of the CNN-D model on 
the two datasets is shown in Fig. 6. When the dropout 
mechanism is not used (dropout ratio=0), there is a 
certain overfitting phenomenon, and the prediction 
accuracy is lower than that of scenarios with dropout 
ratio of 0.05. However, with the increase of dropout 
ratio, more and more nodes are abandoned during the 
training process, resulting in a decline in prediction 
accuracy. Therefore, an appropriate dropout ratio is 
important to ensure neither overfitting nor degradation 
of prediction accuracy. 

 
Fig. 6 Dropout ratio analysis 

5. CONCLUSIONS 
In this study, a multi-station ensemble wind speed 

forecasting framework based on the convolutional 
neural network, dropout mechanism and kernel density 
estimation method is proposed and verified on the Tibet 
datasets. The experimental results show that the CNN-D 
model has high deterministic prediction accuracy and 
suitable ensemble prediction interval. 

ACKNOWLEDGEMENT 
This study is supported by National Natural Science 

Foundation of China (No. 52409007). Special thanks to 
the anonymous reviewers and editors for their 
meaningful comments. 

REFERENCE 
[1] Heng J, Hong Y, Hu J, Wang S. Probabilistic and 
deterministic wind speed forecasting based on non-
parametric approaches and wind characteristics 
information. Appl Energ 2022;306: 118029. 
[2] Wang H.Z, Wang G.B, Li G.Q, Peng J.C, Liu Y.T. Deep 
belief network based deterministic and probabilistic 
wind speed forecasting approach. Appl Energ 2016;182: 
80-93. 
[3] Zhang J, Draxl C, Hopson T, Monache LD, Vanvyve E, 
Hodge B. Comparison of numerical weather prediction 
based deterministic and probabilistic wind resource 
assessment methods. Appl Energ 2015;156:528-541. 
[4] Liu C, Zhang X, Mei S, Zhou Q, Fan H. Series-wise 
attention network for wind power forecasting 
considering temporal lag of numerical weather 
prediction. Appl Energ 2023;336: 120815. 
[5] Khodayar M, Wang J. Spatio-temporal graph deep 
neural network for short-term wind speed forecasting. 
IEEE Trans Sustain Energ 2019;10:670–81. 
[6] Zhang Y, Zhao Y, Kong C, Chen B. A new prediction 
method based on VMD-PRBF-ARMA-E model considering 
wind speed characteristic. Energ Convers Manage 
2020;203: 112254. 
[7] Moreno S.R, Seman L.O, Stefenon S.F, Coelho L.S, 
Mariani V.C. Enhancing wind speed forecasting through 
synergy of machine learning, singular spectral analysis, 
and variational mode decomposition. Energ 2024;292: 
130493. 
[8] Zhang Z, Ye L, Qin H, Liu Y, Wang C, Yu X, et al. Wind 
speed prediction method using Shared Weight Long 
Short-Term Memory Network and Gaussian Process 
Regression. Appl Energ 2019;247:270–84. 
[9] L S.X, Wang L. Deep learning combined wind speed 
forecasting with hybrid time series decomposition and 



6 

multi-objective parameter optimization. Appl Energ 
2022;311: 118674. 
[10] Chen Q, He P, Yu C, Zhang X, He J, Li Y. Multi-step 
short-term wind speed predictions employing multi-
resolution feature fusion and frequency information 
mining. Renew Energ 2023;215:118942. 
[11] Zhang Z, Qin H, Liu Y, Yao L, Yu X, Lu J, et al. Wind 
speed forecasting based on Quantile Regression Minimal 
Gated Memory Network and Kernel Density Estimation. 
Energ Convers Manage 2019;196:1395–409. 
[12] Liu Y, Qin H, Zhang Z, Pei S, Jiang Z, Feng Z, et al. 
Probabilistic spatiotemporal wind speed forecasting 
based on a variational Bayesian deep learning model. 
Appl Energ 2020;260:114259. 
[13] Zhang Z, Tang H, Qin H, Luo B, Zhou C, Zhou H. 
Multi-step ahead probabilistic forecasting of multiple 
hydrological variables for multiple stations. J Hydrol. 
2023;617. 


	OLE_LINK6
	PutAuthorsHere
	OLE_LINK2
	OLE_LINK1
	OLE_LINK7
	OLE_LINK3
	OLE_LINK4

