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ABSTRACT 
 This study employs deep reinforcement learning 

algorithms, including Deep Q-Network, Deep 
Deterministic Policy Gradient, Twin Delayed Deep 
Deterministic Policy Gradient, and Soft Actor-Critic, to 
control the air conditioning system of electric vehicles to 
improve thermal comfort and reduce energy 
consumption. Additionally, random adjustments to 
environmental temperature and solar radiation intensity 
during the training process are made to enhance the 
algorithms' applicability. The results demonstrate that 
these algorithms significantly reduce energy 
consumption while maintaining thermal comfort. 
Notably, the Deep Deterministic Policy Gradient 
algorithm achieves an impressive 37.6% reduction in 
energy consumption. Comparative analysis among the 
algorithms reveals that Deep Q-Network, Deep 
Deterministic Policy Gradient, and Twin Delayed Deep 
Deterministic Policy Gradient exhibit relatively stable 
control behaviors. In contrast, the Soft Actor-Critic 
algorithm's compressor control curve exhibits more 
significant fluctuations, potentially leading to mechanical 
wear. Deep Q-Network, Deep Deterministic Policy 
Gradient, and Twin Delayed Deep Deterministic Policy 
Gradient algorithms consistently demonstrate effective 
thermal comfort control and energy-saving performance 
in various operating conditions. 

 
Keywords: deep reinforcement learning, electric vehicle, 
air conditioning system, thermal comfort 

NONMENCLATURE 

Abbreviations 
DQN 

 
Deep Q-Network 

DDPG Deep Deterministic Policy Gradient 
TD3 Twin Delayed Deep Deterministic 

Policy Gradient  
SAC 
PMV 

Soft Actor-Critic 
Predicted Mean Vote 

 

1. INTRODUCTION 
With the increasing severity of global energy and 

environmental issues, the electric vehicle industry is 
experiencing rapid growth. However, the challenge of 
electric vehicle range has persisted, primarily due to the 
limited energy density of electric vehicle power 
batteries, typically ranging from 110 to 160 watt-hours 
per kilogram [1]. Under the current battery energy 
density conditions, devising rational control strategies to 
reduce energy consumption across various systems of 
electric vehicles has become a practical approach to 
improving their range. The electric vehicle air 
conditioning system is considered one of the highest 
energy consumers among these systems. Studies 
indicate that activating the electric vehicle air 
conditioning system significantly affects the vehicle's 
range, sometimes causing a reduction of over 30% [2]. 
Electric vehicle air conditioning systems rely solely on 
battery power and cannot generate additional power like 
internal combustion engines in conventional vehicles, so 
designing efficient control strategies for electric vehicle 
air conditioning systems has become paramount. 
Research indicates that activating the air conditioning 
system can significantly impact the driving range of 
electric vehicles. In certain conditions, it can even reduce 
over 30% in driving range [2]. This is primarily because 
the electric vehicle's air conditioning system relies solely 
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on the battery for energy input, unlike traditional 
combustion engine vehicles that use the engine to power 
the air conditioning. Hence, designing an efficient control 
strategy for electric vehicle air conditioning systems 
becomes paramount. 

Electric vehicle air conditioning systems typically 
employ on/off or PID control strategies. While the on/off 
strategy is straightforward, the frequent start-stop cycles 
of the compressor lead to increased energy consumption 
in the air conditioning system and result in frequent 
fluctuations in cabin temperature [3]. PID control 
strategies are widely used in air conditioning system 
control due to their simplicity and reliability, 
adaptability, and robustness [4]. However, setting PID 
parameters requires expertise or engineering 
experience, making their control often suboptimal and 
challenging to meet cabin thermal comfort and low 
energy consumption requirements simultaneously. 
Model-based optimization control methods, such as 
dynamic programming [5] and model predictive control 
[6], have been extensively researched because they can 
achieve optimal results while satisfying air conditioning 
system constraints. However, these methods require 
highly accurate and simplified dynamic models of the air 
conditioning system and have high hardware 
computational demands, limiting their practical 
applicability. 

Reinforcement Learning (RL) offers an improved 
control methodology for electric vehicle air conditioning 
systems. It is oriented towards system control objectives, 
continuously enhancing control strategies through 
interactions with the controlled system to achieve 
optimal control performance. Researchers such as Kasbi 
[7] and Brusey [8] have demonstrated better results in 
temperature control and energy consumption for 
electric vehicle air conditioning systems using the 
SARSA(State-Action-Reward-State-Action) algorithm 
compared to traditional control methods. However, 
traditional RL methods often require the discretization of 
observations and control values, making them less 
suitable for continuous air conditioning systems. Choi et 
al. [9] used DQN to control compressors and blowers, 
and tested the generalization ability of DQN algorithm. 
While Joo et al. [10] utilized the SAC algorithm to 
regulate the expansion valve and compressor, achieving 
an energy consumption as low as 53% compared to PID 
control during cabin cooling. Nevertheless, research that 
comprehensively considers external environmental 
changes and the trade-off between thermal comfort and 
energy consumption remains relatively limited. 
Comparative studies of different deep reinforcement 

learning algorithms regarding rewards, thermal comfort, 
and energy consumption are exceedingly scarce. 

This paper introduces a deep reinforcement learning 
control approach that considers environmental factors. 
By incorporating environmental temperature and solar 
radiation intensity into observations and defining 
thermal comfort metric PMV and energy consumption in 
the reward function, we iteratively train the model to 
obtain the optimal control strategy. Furthermore, we 
compare the control performance of four deep 
reinforcement learning algorithms, DQN, DDPG, TD3, 
and SAC, and discuss their reward convergence, thermal 
comfort, and energy efficiency. This study aims to 
facilitate the application of deep reinforcement learning 
algorithms in electric vehicle air conditioning system 
control. 

2. AIR CONDITIONING SYSTEM OF EV AND CONTROL 
PROBLEM DESCRIPTION 

2.1 Air conditioning system 

As shown in Fig. 1, the electric vehicle air 
conditioning system is a complex, nonlinear thermal 
system. To investigate control strategies, this paper 
requires establishing a simplified yet sufficiently accurate 
dynamic air conditioning model.  The moving-boundary 
lumped-parameter modelling method is widely 
employed in the dynamic model of the air conditioning 
system's heat exchanger because it can provide concise 
and precise results [11]. Therefore, this paper adopts the 
moving boundary method to construct the dynamic air 
conditioning model. The system consists of a 
compressor, condenser, expansion valve, and 
evaporator. 
 

Expansion 
value

Compressor

Pe

Pc

Condenser

Evaporator

 
Fig. 1 Air conditioning system 

 

The dynamic process of the compressor can be 
represented as follows: 
  comp comp d ref volm N V ρ η  (1) 

    /oc is ic a ich h h η h  (2) 
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Ncomp  is the mass flow rate of the refrigerant, and 
Ncomp is the compressor speed. Vd is the displacement. 
ρref is the refrigerant density, and ηvol is the volumetric 

efficiency. Moreover his  and ℎ𝑖𝑐  are the enthalpy 
values at the compressor's inlet and outlet. ηa  is the 

isentropic efficiency. 
The dynamic process of the expansion valve can be 
represented as follows: 

   v v v v c em C a ρ P P  (3) 

Cv  is the flow coefficient, and av  is the opening 
degree of the expansion valve. ρv  is the refrigerant 

density. Pc  is the condensing pressure, and Pe  is the 
evaporating pressure. 

R134a undergoes three phases in the evaporator: 
liquid, two-phase liquid-gas, and superheated vapor. The 
heat exchange process mainly occurs in the evaporation 
region, including the liquid and two-phase liquid-gas 
phases. According to conservation of energy, the length 
of the evaporation region can be expressed as: 

          1 e
lge e gle e ie ie ie ee v we re

dl
ρ h A γ m h h a πD l T T

dt
 (4) 

The first term on the right-hand side of the equation 
is the enthalpy change in the two-phase region of the 
refrigerant, where ṁv  is the mass flow rate of the 
refrigerant, hge and hie are the enthalpy values of the 
refrigerant vapor state and the inlet refrigerant enthalpy 
of the evaporator, respectively. The next two terms on 
the right-hand side are used to describe the heat 
exchange between the refrigerant and the inner wall 
surface of the evaporator. Here, aie is the heat transfer 
coefficient, Die  is the inner diameter of the flattened 
tube, le  is the length of the two-phase region, Twe  is 
the equivalent temperature of the tube wall and fins, and 
Tre  is the saturation temperature of the refrigerant at 
the evaporator pressure. 

The dynamic variation of the evaporating pressure 
can be expressed as follows: 

 
 

 



lg lg

( ) ie we re
e e

ge ie ee ie le

e e e

v comp

a πD l T TdP
A L m m

d

d

ht

h

d h

ρ h

P
 (5) 

ρge is the density of refrigerant vapor, and hle is the 

enthalpy of the refrigerant liquid. 
The evaporator surface temperature can be 

expressed as follows: 

         we
p oe oe ae we ie ie e we rewe

dT
C m a A T T a πD l T T

dt
 (6) 

Cp  is the specific heat capacity of the evaporator 
material, and m is the mass of the evaporator. aoe is the 
heat transfer coefficient between the evaporator and 
the ambient air. Aoe corresponds to the frontal area of 

the evaporator, and Tae is the ambient air temperature 
around the evaporator. 

The modeling method for the condenser is the same 
as that for the evaporator: 

 
     

 

   

 
  

 
                            +

2

wc
p c rc wc oc wc acic ic owc

π ic
ic c c wish c

c

dT
C m a πD l T T a A T T

dt

T T
a πD L l T

 (7) 

Throughout the refrigeration cycle, the total mass of 
the refrigerant remains constant, and the following 
equation is used to describe refrigerant mass 
conservation: 

 
   

   

       

    

1

                       [ 1 ]

total pipe e t e e gs e e gt e e

c c e c gc e c ge t c

m m A ρ l γ ρ l γ ρ L l

A ρ l γ ρ l γ ρ L l
 (8) 

The left side of the equation is used to describe the 
total mass inside the evaporator and condenser, where 
mtotal  is the total refrigerant mass, and mpipe  is the 
refrigerant mass outside the heat exchanger. 

2.2 Cabin thermal model 

To balance computational complexity with model 
accuracy, a lumped-parameter thermal model for the 
passenger compartment is established in this study. 

The temperature variation in the cabin is described 
by the following equation: 

 


c cab AC

a a

dT Q Q

dt M C
 (9) 

QAC  is the heat exchange between the passenger 
compartment air and the evaporator, Ma is the mass of 
air inside the cabin, Ca is the specific heat capacity of 
air, Qcab  is the total heat load in the cabin, including 
convective heat load Qconv , solar radiation heat load 
Qsolar , ventilation heat load Qvent , electrical equipment 
heat load Qe, and human body heat load Qhuman. 

The heat exchange between the cabin air and the 
evaporator: 
  ( )AC ec e ec cQ h A T T  (10) 

hec  is the heat transfer coefficient between the 
evaporator surface and the air, Ae  is the convective 
heat transfer area of the evaporator, and Tec  is the 
evaporator surface temperature. 

The convective heat exchange between the interior 
walls and the cabin: 
   ( )conv i i si cQ h A T T  (11) 

Tsi  is the temperature of the cabin enclosure 
structure, which includes the front windshield, the front 
end of the car, the roof, the rear windshield, the side 
panels, side windows, and seats. hi  is the convective 
heat transfer coefficient between the interior air and the 
cabin enclosure structure, and Ai is the surface area of 
the enclosure structure. 



4 

The solar radiation exchange: 
 solar iQ IηS  (12) 

I is the solar radiation intensity, η is the coefficient of 
solar light passing through the windows, and Si  is the 
effective area of the windows perpendicular to the 
direction of sunlight. For the sake of convenience in the 
study, Qvent, Qe, and Qhuman are considered as constant 
values. 

2.3 Air conditioning control objectives 

The air conditioning control objectives consist of two 
aspects: firstly, to maintain a comfortable environment 
within the cabin, and secondly, to reduce the energy 
consumption of the air conditioning system. In this study, 
cabin thermal comfort is evaluated using the Predicted 
Mean Vote (PMV).  

The control objectives are represented by the 
following equation: 

       arg0
min { ( ) ( ) ( ) }

finalt

cabin t et comp fanf PMV t PMV λ P t P t dt (13) 

PMVcabin(t) is the thermal comfort evaluation of the 
cabin at time t, PMVTarget is the target thermal comfort 

evaluation of the cabin, Pcomp is the compressor power, 
Pfan  is the fan power, λ is the energy consumption 
weighting factor used to balance the temperature control 
and energy consumption objectives, and tfinal  is the 

duration of the vehicle test cycle. 

3. DEEP REINFORCEMENT LEARNING ALGORITHM 

3.1 Electric vehicle air conditioning MDP model 

The reinforcement learning task for electric vehicle 
air conditioning control can be constructed as a Markov 
Decision Process (MDP), which can be described using a 
quadruple {S, A, R, P}, where the S is the state space 
composed of various state variables of the electric 
vehicle air conditioning system, the A is the action space 
consisting of control parameters, the R is the reward 
obtained from the electric vehicle air conditioning 
system after taking action, and the P is the transition 
probabilities between different states of the electric 
vehicle air conditioning system. 

The parameters of the Markov Decision Process 
(MDP) model for the electric vehicle air conditioning 
system are as follows: 

1) State representation 
The selected state variables include cabin 

temperature, ambient temperature, solar radiation 
intensity, cabin temperature rate of change, and 
evaporator surface temperature. Among these, cabin 
and evaporator surface temperatures represent the heat 
exchange status between the passenger cabin and the 

evaporator. The rate of change of passenger cabin 
temperature is used to describe the dynamic variations 
in the passenger cabin's thermal environment, while 
ambient temperature and solar radiation intensity are  
used to describe the environmental thermal conditions. 

2) Action representation 
The action should align with the actual control 

variables of the electric vehicle air conditioning system. 
This study selects compressor speed and blower fan 
speed as actions. Since the DQN algorithm can only 
handle discrete action spaces, the action space is 
discretized with equal intervals, with a difference of 500 
r/min. 

3) Transition probability 
The transition probability P reflects the dynamic 

characteristics of the electric vehicle air conditioning 
system. P is unknown for the electric vehicle air 
conditioning system, and in this paper, Monte Carlo 
methods are used to obtain an unbiased estimate of P. 

4) Reward function 
Based on the optimization objective, the reward 

function is defined as follows: 

arg arg

arg

( ) if ( )
( )

10                                        if ( )

         [ ( ) ( )]

cabin t et cabin t et

cabin t et

comp fan

PMV t PMV PMV t PMV
r t

PMV t PMV

P t P t

   
 

 

 

0.5

0.5

α

β

 (14) 

α and β are weighting coefficients, where Euse(t) is 
the power consumption of the air conditioning system, 
including the compressor power Pcomp(t) and the blower 

fan power Pfan(t). In this paper, PMVtarget is set to 0. The 
first part of the equation calculates the deviation 
between the actual PMV in the cabin and the target PMV, 
while the second part calculates the energy consumption 
of the air conditioning system.  

3.2 Deep reinforcement learning algorithm 

3.2.1 DQN 

Deep Q-learning is a reinforcement learning 
algorithm based on deep learning, aimed at 
approximating the action-value function (Q-value) within 
Markov decision processes [12]. DQN utilizes deep 
neural networks to approximate the Q-value function 
and employs techniques like experience replay and fixed 
target networks to enhance training stability and 
convergence. The fundamental concept behind DQN 
involves storing the agent's experience samples in an 
experience replay buffer and randomly sampling from it 
during training to address sample correlation issues. The 
update equation for the Q-network is as follows:  

    
2

'
1 1

1 1
( ) [ max ( , , ) ( , , )]

2
t t t ti

L w r γ Q s a w Q s a w
N

 (15) 
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Fig. 2 Illustrates the DQN training architecture 

 

 


 


( )L w
w w a

w
 (16) 

   ' '(1 )w τ w τ w  (17) 

( , , )t tQ s a w  is the value network, where w  denotes 

the parameters of the value evaluation network. α stands 
for the learning rate, while  

'
1 1( , , )t tQ s a w  is the target 

network, with 'w  being the parameters of the target 
network. τ  is the soft update rate. 

 

3.2.2 DDPG 

Deep Deterministic Policy Gradient is a deep 
reinforcement learning algorithm designed for continuous 
action space [13]. DDPG learns both deterministic policy 

networks and action value networks. The policy network 
outputs actions directly, while the value network 
evaluates the quality of the policy. DDPG uses empirical 
replay and target network technology to enhance the 
stability and convergence of the algorithm. It is good at 
solving continuous control problems and shows strong 
generalization ability. The following formula represents 
DDPG network update: 

       
   

 
2

1 1

1
( ) , ,t t t t

i

L w r γQ s μ s Q s a
N

 (18) 

         
  ∣

1
,u u

μ
a t t tθ θ

i

J Q s μ s μ s θ
N

 (19) 

        (1 ) , (1 )u μ μθ εθ ε θ θ εθ ε θ  (20)
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Fig. 3 Illustrates the DDPG training architecture 
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3.2.3 TD3 

Twin Delayed Deep Deterministic Policy Gradient is an 
improved version of DDPG [14]. TD3 enhances algorithm 
stability by introducing twin Critic networks and target 
policy smoothing regularization. Specifically, TD3 employs 
two independent value function networks to mitigate 
overestimation, and the following equation represents the 
target value estimation: 
   

 


  
1 1

1,2
min ,i t t
i

y r γ Q s μ s  (21) 

Additionally, target policy smoothing regularization is 
applied, which involves introducing perturbations to the 
action in the next state: 

         2
1 1 , 0, , ,t ta μ s ε ε clip N σ c c  (22) 

The loss function is computed as follows: 

    
2

,i i t tL Q s a y  (23) 

The stability of the algorithm is further improved by 
employing the delayed update of the action value 
network. In other words, the action value network is 
updated after multiple updates of the Critic network.
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Fig. 4 Illustrates the TD3 training architecture 

 
 

3.2.4 SAC 

Soft Actor-Critic is a deep reinforcement learning 
algorithm based on maximum entropy theory [15]. SAC 
introduces entropy regularization to strike a balance 
between reward return and entropy. Entropy measures 
the randomness of the policy; increasing entropy implies 
greater policy randomness, which encourages more 
exploration and thus accelerates learning. This strategy 
considers the reward signal and emphasizes exploration 
and maintaining policy diversity. The computation of the 
target Q-value in SAC is as follows: 

   

 

  



∣

∣ ∣

1,2 , 1 1

1 1

(min , ( )

   - log( ( ( ) )))

( )i μ i t t

t t

y r γ Q s π s

α π π s s
 (24) 

 ∣ ∣1 1- log( ( ( ) ))t tα π π s s  is the entropy of the policy, where 

α denotes the weight of the entropy. SAC also employs two 
value function networks to evaluate the policy's value and 
uses maximum entropy regularization to enhance policy 

exploration, thus improving the algorithm's exploration 
efficiency. 

4. SIMULATION EXPERIMENT 

4.1 Parameter settings 

To enhance the generalization ability of deep 
reinforcement learning algorithms, the following 
parameter settings were used for the electric vehicle air 
conditioning system simulation experiments in this paper. 
The training environment temperature for the electric 
vehicle air conditioning system follows a uniform 
distribution in the range of [25°C, 45°C], and the solar 
radiation intensity follows a uniform distribution in the 
range of [500W/m2, 1000W/m2]. The initial temperature 
of the passenger compartment is set to 50°C. During 
training, the Worldwide Harmonized Light vehicles Test 
Cycle (WLTC) is used as the training scenario, and 1000 
training epochs are conducted. The sampling time is set to 
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10 seconds, and the action outputs are averaged over a 10-
second time window to avoid abrupt changes in action 
outputs. To ensure a fair comparison of the performance 
of different deep reinforcement learning algorithms, the 

same hyper parameters were used for all four deep 
reinforcement learning algorithms. The hyper parameter 
settings are shown in the table below: 
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Fig. 5 Illustrates the SAC training architecture 

 
Table 1 Hyper parameter settings 

Hyper parameter Value 

Discount factor 0.99 
Learning rate 0.0001 

Number of neurons 256 
Minibatch size 64 

Memory pool size 106 

4.2 Experimental results 

4.2.1 Convergence results 

Fig. 6 displays four deep reinforcement learning 
algorithms' sliding average reward convergence 
trajectories during the training process, with a sliding 
window length set to 20. Several key observations can be 
made by examining the curves: 

Firstly, in terms of convergence speed, the DQN 
algorithm exhibits the fastest convergence rate. It reaches 
a stable average reward after only 156 training rounds. In 
contrast, the SAC algorithm demonstrates the slowest 
training speed, requiring 583 rounds of training to achieve 
convergence. 

Secondly, regarding convergence rewards, the DDPG 
algorithm achieves the highest average reward. Compared 
to the DQN, TD3, and SAC algorithms, DDPG experiences 
an increase in average rewards by 15.6%, 8.0%, and 44.8%, 
respectively. 

Lastly, concerning training stability, the DDPG algorithm 
shows the smoothest variation in average rewards after 

convergence. This suggests that the DDPG algorithm 
exhibits excellent adaptability to different external 
environments. 
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Fig. 6 Average reward 

 
Table 2 Convergence results 

Agent 
Convergence 

epochs 
Convergence 

reward 
Reward  
STDEVA 

DQN 156 1037.3 80.5 
DDPG 188 1198.8 38.3 
TD3 290 1110.1 72.6 
SAC 583 827.7 63.9 
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4.2.2 Energy performance of deep reinforcement learning 

The energy consumption of the electric vehicle air 
conditioning system directly affects its driving range. The 
table below shows the energy performance of on/off 
control and different deep reinforcement learning 
algorithms at different environmental temperatures (solar 
radiation intensity is 750W/m2). The control logic for 
on/off control is as follows: when the passenger 
compartment PMV is more significant than 0.5, both the 
compressor speed and fan speed are set to the maximum; 
when the passenger compartment PMV is less than 0.5, 
the compressor and fan speeds are set to 0. When the 
passenger compartment PMV is between -0.5 and 0.5, the 
compressor and fan speeds remain unchanged from the 
previous time step. 

Table 3 illustrates that control strategies based on 
deep reinforcement learning result in varying degrees of 
energy improvement compared to on/off control. Among 
them, the control strategy based on DDPG shows better 
energy performance. Compared to the traditional on/off 
control strategy at different environmental temperatures, 
the energy consumption of the DDPG-based control 
strategy is reduced by 8.4%, 38.2%, 53.2%, and 50.7%, with 
an average reduction of 37.6%. This indicates that control 
strategies based on deep reinforcement learning have 
significant energy-saving potential. 

 
Table 3 Energy Consumption of the Air Conditioning System 

Control 
strategy 

Energy consumption (kW·h) 

30℃ 35℃ 40℃ 45℃ 

on/off 0.83 1.02 1.24 1.50 
DQN 0.90 0.67 0.63 1.47 

DDPG 0.76 0.63 0.58 0.74 
TD3 0.83 0.69 0.63 0.79 
SAC 0.83 0.84 0.72 0.79 

 
4.2.3 Performance of Deep Reinforcement Learning in 
Thermal Comfort Control 

Fig. 7 shows the performance of different deep 
reinforcement learning algorithms in passenger 
compartment thermal comfort control. It can be seen that 
under different external environmental temperatures, all 
deep reinforcement learning algorithms can transition the 
passenger compartment from the initial state to a 
thermally comfortable state in approximately 250 
seconds. At an environmental temperature of 30°C, both 
SAC and DQN algorithms experienced thermal comfort 
violations after transitioning to a thermally comfortable 
state, while DDPG and TD3 thermal comfort control 
remained relatively stable. 
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Fig. 7 Cabin thermal comfort control 
 

4.2.4 Performance of deep reinforcement learning in 
compressor/fan Control 

Fig. 8 shows the compressor/blower control 
performance of each deep reinforcement learning control 

strategy when the ambient temperature is 40℃, and the 
solar radiation intensity is 750W/m2. It can be seen that in 
the first 250s, in order to achieve rapid cooling of the crew 
cabin, each control strategy adopts a higher 
compressor/blower speed. Due to the random strategy 
adopted by SAC, the compressor/blower control curve 
fluctuates wildly, and frequent and violent compressor 
speed fluctuations can lead to wear of mechanical 
components. In contrast, the compressor control curve of 
other depth strengthening algorithms is relatively gentle, 
which can adapt to the actual frequency conversion 
control of the compressor. 
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Fig.8 Control curves 
 

4.2.5 Generalization performance 

This study selected NEDC, FTP72, FTP75, and CLTC as 
the test driving cycles to test the generalization abilities of 
different deep reinforcement learning algorithms. The 
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environmental conditions for these tests were set at 40°C 
with a solar radiation intensity of 750 W/m2. Fig. 9 shows 
the thermal comfort control performance of the four deep 
reinforcement learning-based control strategies when 
facing non-training driving cycles. It can be observed that 
all four deep reinforcement learning algorithms achieve 
good thermal comfort performance under these 
conditions. Table 4 provides their energy consumption 
performance. Compared to traditional on/off control, DQN 
reduces energy consumption by an average of 47.1% in the 
four non-training driving cycles and 34.3% in the training 
cycle WLTC. DDPG reduces energy consumption by an 
average of 50.4% in the four non-training driving cycles 
and 53.2% in the training cycle WLTC. TD3 reduces energy 
consumption by an average of 44.8% in the four non-
training driving cycles and 49.2% in the training cycle 
WLTC. SAC reduces energy consumption by an average of 
27.1% in the four non-training driving cycles and 41.9% in 
the training cycle WLTC. This indicates that even under 
different test conditions, DQN, DDPG, and TD3 still 
perform well, while SAC's performance is relatively 
inferior. 
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Fig 9 Thermal comfort control under test cycle 
 

Table 4 Energy consumption of the air conditioning system 
under test conditions 

control 
strategy 

Energy consumption (kW·h) 

NEDC FTP72 FTP75 CLTC 

on/off 1.07 1.01 1.05 1.11 
DQN 0.57 0.56 0.53 0.58 

DDPG 0.53 0.53 0.50 0.54 
TD3 0.59 0.59 0.56 0.60 
SAC 0.75 0.75 0.75 0.84 

 

5. CONCLUSION 
After researching deep reinforcement learning-based 

control strategies for electric vehicle air conditioning, this 
paper draws the following conclusions: 

This study employs four deep reinforcement learning 
algorithms to control the electric vehicle air conditioning 
system, considering both passenger cabin temperature 
control and energy consumption of the air conditioning 
system. The algorithm's applicability is enhanced by 
randomly setting environmental temperature and solar 
radiation intensity during training. 

Deep reinforcement learning-based control strategies 
for electric vehicle air conditioning significantly reduce the 
energy consumption of the air conditioning system. 
Compared to traditional on/off control, DDPG achieves an 
average energy consumption reduction of 37.6% within an 
environmental temperature range of 25-45°C. 

When comparing control strategies of different deep 
reinforcement learning algorithms, it was observed that 
DQN and TD3 exhibit relatively stable control, whereas 
SAC, based on a stochastic policy, shows significant 
fluctuations in compressor control, which could lead to 
severe mechanical wear. DQN, DDPG, and TD3 control 
strategies, on the other hand, demonstrate smoother 
operation. 

Regarding the generalization capability of control 
strategies, this paper tested four different operating 
conditions and found that DQN, DDPG, and TD3 all achieve 
reasonable thermal comfort control and energy-saving 
results under different conditions. 
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