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ABSTRACT 
  Under the "Dual-Carbon" targets, hydrogen 

production powered by renewable energy and hydrogen 
direct reduction offer approaches to integrating a high 
proportion of renewable energy and catalyzing the steel 
industry's transition towards a low-carbon footprint. The 
hydrogen-based steelmaking system (HBSS) presents a 
multi-energy interaction, encompassing processes from 
hydrogen production and ironmaking to the final 
steelmaking processes. Additionally, the high investment 
and operational expenses necessitate that decision-
makers prioritize enhancing the system's economic 
efficiency to ensure its long-term viability and 
effectiveness. In this study, we first introduced a multi-
period optimization model for HBSS, aiming to reduce 
the levelized cost of steel (LCOS) from both the 
investment and operational aspects. Then, the rolling-
horizon approach has been used to overcome 
computational infeasibility for large mixed-integer linear 
programming problems by solving the problem 
periodically, including additional information from 
proximately following periods. We further compared it 
with the single-period and forward-looking approaches, 
indicating that the optimal result of LCOS varied from 
$406 to $520 for the different approaches. It proves that 
the rolling-horizon approach can lead to an economics-
better solution than the single-period approach and is 
only a few percent away from the forward-looking 
approach. 
 
Keywords: multi-period optimization, rolling-horizon 
approach, industrial decarbonization, hydrogen-based 
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NONMENCLATURE 

Abbreviations  

H2 Hydrogen 
H2-SF Hydrogen Direct Reduction Shaft 

Furnace 
EAF Electric Arc Furnace 
DRI Direct Reduction Iron 
HBI Hot-Briquetted Iron 
TSP Total Steel Production 
CO2 Carbon Dioxide 
TOU Time of Use 
RESs Renewable Energy Sources 
CUC Clustered Unit Commitment 
HBSS Hydrogen-Based Steelmaking System 
LCOS Levelized Cost of Steel 
H2-DRI Hydrogen-Based Direct Reduction 

 

1. INTRODUCTION 

1.1 Motivation 

Accelerating the transition to green and low-carbon 
energy has become a global consensus and collective 
action. The global community has established a series of 
timelines and goals in response to carbon neutrality. On 
the one hand, this considers the issue of emission 
pollution, and on the other hand, it considers the 
finiteness of fossil fuels. Unlike fossil fuels, RESs such as 
WT and PV can provide a sustainable energy guarantee 
for humanity. According to the International Energy 
Agency (IEA), renewables' share of the power generation 
mix worldwide is set to rise from 29% to 35% by 2025. 
However, the growth of renewable power generation 
and integration into the grid presents a challenge to the 
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absorption of renewable energy with random 
fluctuations [1], [2]. 

Meanwhile, steel is a vital commodity for all modern 
economies. The steel industry, however, is notably 
energy- and emission-intensive, which has a significant 
environmental impact [3]. As the world's largest energy 
consumer among industrial sectors, the steel industry 
has witnessed a rising trend in production in recent 
years. According to statistics from the World Steel 
Association, in 2020, a total of 1.86 billion tons of steel 
was produced worldwide, with the steel industry's direct 
carbon emissions amounting to approximately 3.5 billion 
tons, accounting for 7% to 9% of global carbon emissions 
from human activities. China's annual crude steel output 
grew from 129 Mt in 2000 to 1.064 Bt in 2020, marking 
an increase of about 7.3 times.  

1.2 Literature review 

Focusing on the decarbonization target of the steel 
industry [4], a more promising application of hydrogen is 
acting as a reducing agent in the production of  H2-DRI 
[5], [6]. With the improvement of both the hydrogen 
supply system [7]–[9] and the H2-based direct reduction 
[10]–[12], H2-based steelmaking has promoted a fossil 
fuel-free pathway for the steel industry [13]–[15]. By 
integrating high-energy-consuming industries with RESs, 
it hopes to absorb more RESs and effectively reduce 
industrial carbon emissions [16]. Steel manufacturers 
have launched several notable projects to investigate the 
commercial feasibility of hydrogen-based steelmaking 
processe [17]–[19]. Meanwhile, as scrap steel is a 
recycled resource, increasing the scrap ratio in the 
steelmaking process can decrease raw material costs 
[20] and advance more energy-efficient production.  

Research focused on the optimization of HBSS is 
primarily aimed at achieving a specific objective, such as 
minimizing overall system costs or emissions, which is 
pursued through three interrelated research strands: 

The first strand of research centered on the design 
of multi-energy flows within the systems, as highlighted 
in studies [21], [22]. It further extends to examining the 
influence of various uncertainties on the optimal 
operation of the system. Factors such as fluctuations in 
electricity prices, carbon costs, and equipment prices are 
critically analyzed in the study [23]. 

The second strand shifts focus on evaluating the 
techno-economic feasibility on a system level, which 
involves an analysis that integrates technical 
performance with economic viability, assessing the 
financial aspects of hydrogen utilization to produce steel 
along the proposed route [24], [25]. 

The third strand is dedicated to assessing the 
potential for decarbonization potential [26]–[29], which 
adopts a socio-technical perspective to examine the full 
industrial processes, therefore, extends the discussion 
from the specificities of HBSS design and feasibility to the 
broader implications for environmental sustainability. 

Building upon the following research, most research 
considers the so-called single-period approach in their 
investment decision-making, which considers a singular 
investment period followed by multiple operational 
periods. Typical parameters, which are assumed to be 
known within the considered time horizon since these 
are readily available, are used in this approach. However, 
parameters, such as demand and prices, are updated in 
the coming future, considering the investment scheme 
of the system at different stages in the future from the 
perspective of multi-period planning is conducive to 
achieving better source-load matching and improving 
the economy of long-time frame investment [30]. 

Multi-period optimization models are typically 
constructed by setting objective functions and 
constraints to identify investments and operational 
decisions over the life cycle, such as operating, 
investment, and emission costs [31], [32]. When the 
decision horizon achieves a long time frame, the multi-
optimized model will include a large number of variables 
and constraints, which can be too complex to be solved 
in a reasonable time. The choice of foresight or the 
decision horizon can significantly impact the efficiency of 
solving optimization problems.  

Fig.1 illustrates the different decision horizon 
alternatives of single-period, forward-looking [32], and 
rolling-horizon [33] approaches for solving multi-period 
optimization problems over a large period. As for the 
forward-looking approach, investment decisions are 
made with full knowledge of the lifetime. In contrast, as 
for the rolling-horizon approach, investment decisions 
are made sequentially.  

 
Fig. 1. Decision horizon alternatives of single-period, forward-

looking, and rolling-horizon approaches. 
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1.3 Contribution 

The major contributions of our work are threefold: 
Firstly, we address a model of HBSS encompassing 

each piece of energy equipment that allows us to delve 
into the intricate interrelationships of multi-energy flows 
within HBSS.  

Further, we employ a weekly resolution in our 
model, which can capture the operational characteristics 
of HBSS, including the combination of daily, weekly, and 
seasonal dynamics, and provide a framework for 
analyzing the efficiency and effectiveness of HBSS in 
various scenarios. 

Finally, we develop a multi-period optimization 
model for HBSS to minimize LCOS across the lifecycle, 
ensuring its long-term economic and operational 
efficiency. Then, we compared the optimization results 
and computational efficiency under different 
approaches.  

1.4 Paper organization 

The remaining parts are structured as follows: 
Section 2 presents the structure of a hydrogen-based 
steelmaking system. The optimization framework for 
solving the multi-period optimization problem using the 
rolling-horizon approach is shown in Section 3. Case 
study and result analysis are performed in Section 4. 
Conclusions are given in Section 5. 

2. DESCRIPTION OF HBSS  

2.1 Schematic of the energy flow of HBSS 

The hydrogen-based steelmaking system is a multi-
energy coupled system that integrates various energy 
technologies such as PEM electrolyzer, H2 storage, H2-SF, 
HBI storage, and EAF, WT, PV, and the power grid provide 
the electricity supplied to the system for the electrolyzer, 
hydrogen direct reduction shaft furnace, and electric arc 
furnace. 

 
Fig.2. Schematic of the energy flow of HBSS 

Fig.2 illustrates the schematic of the energy flow of 
HBSS, which can be divided into three steps: hydrogen 
production, ironmaking and steelmaking. 

2.2 CUC model of PEM electrolyzer 

PEM electrolyzer possesses the highest operational 
flexibility and turndown capability and has a low 
minimum load, short start-time, and high ramp rate. The 
operating characteristics of the PEM electrolyzer can be 
determined as: 
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where K  is the total number of PEM electrolyzer units 
within the cluster, 1,2,...,k K=  

E
tu ,

E
ts , and 

E
td  are 

three binary variables respectively represent the on/off 
status, start-up action, and shut-down action of the PEM 
electrolyzer,   is the non-negligible heating time 
during the start-up phase of the electrolyzer the start-up 
delay,

E.maxS and E.maxD respectively represents the 

maximum number of start-up and shut-down actions of 
the PEM electrolyzer within an operating cycle, E.min 

and E.max  represent the minimum and maximum 

output percentages of the PEM electrolyzer, E.max P  

represents the full ramp-up power of the PEM 
electrolyzer, and E  represents the hydrogen 

production efficiency of the PEM electrolyzer. 
In addressing the complexity of modeling multiple 

electrolyzer units, we adopt the CUC model to aggregate 
electrolyzer units into clusters, replacing numerous 
binary variables with a single integer variable for each 
cluster, simplifying the computation [34]. Thus, equation 
(3) can be replaced by equation (4) as below: 
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where
E
tu ,

E
ts , and 

E
td  are three integer variables 

representing the number of on/off status, start-up 
action, and shut-down action of the clustered PEM 
electrolyzer, respectively. 

2.3 Model of H2 storage 

H2 storage can be regulated on both long-time 
scales (weeks) and short-time scales (hours) [30]. The 
hourly operating characteristics of H2 storage can be 
determined as follows (weekly operational 
characteristics are almost the same) :  
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where 
HT
tSOH represents the state of hydrogen (SOH) of 

the H2 storage at the time ( )t t T  , 0
HTSOH  and 

HT
TSOH  

are the capacity percentages of the H2 storage at the 
beginning and end of the hydrogen charging and 
discharging sessions, respectively,

HT.c
tG  and

HT.d
tG

represent the volume of hydrogen charged and 
discharged at the time t , HT  represents the self-loss 

rate of the hydrogen storage, HTS  represents the 

installed capacity of the H2 storage, c
HT  and d

HT  are 

the efficiencies of charging and discharging hydrogen in 
the storage tank, respectively, 

HT.c
tv  and 

HT.d
tv are 

binary variables indicating the charging and discharging 
states of the storage tank, min

HTSOH  and max
HTSOH  

represent the upper and lower limits of the storage tank 
capacity percentage, respectively.  

For the transitions between weeks, the state at the 
final time of one week and the initial time of the 

following week must be the same. Continuity constraints 
can ensure a feasible transition between weeks [35]: 
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where 
H

,
T

w tSOH  represents the SOH of the H2 storage at 

the time t  within the week ( )w w W  . 

2.4 Model of H2-SF 

H2-SF is a continuous production equipment with 
operational flexibility [36]. The operating characteristics 
of H2-SF can be determined as: 
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where SF.min  and SF.max  represents the shaft furnace's 

minimum and maximum output percentages, 
respectively, 

SF.max
tD is the full ramp-up power of the 

shaft furnace, SF  represents to the efficiency of the 

reduction process in the shaft furnace. 

2.5 Model of HBI storage 

The operational characteristics of HBI storage are 
similar to those of H2 storage. However, due to the 
smaller capacity of HBI storage, it is scheduled on a daily 
cycle, stipulating that the storage capacity is restored to 
its initial state at the beginning and the end of each day. 
The operating characteristics of HBI Storage can be 
determined as follows: 
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where 
HBI
tSOH  represents the State of HBI (SOH) of the 

HBI storage at the time t , 0
HBISOH  and 

HBI
TSOH  

represents the capacity percentages of the HBI storage 
at the beginning and end of the HBI charging and 
discharging sessions, respectively, 

HBI.c
tD  and 

HBI.d
tD  

represents the mass of HBI charged and discharged at 
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the time t  respectively, 
HBI  represents the self-loss 

rate of the HBI storage, 
HBIS  represents the installed 

capacity of the HBI storage, c
HBI  and d

HBI  are the 

efficiencies of charging and discharging HBI in the 
storage, respectively, 

HBI.c
tv  and 

HBI.d
tv  are binary 

variables indicating the charging and discharging states 
of the HBI storage, min

HBISOH  and max
HBISOH  represents 

the upper and lower limits of the HBI storage capacity 
percentage, respectively. 

2.6 Model of EAF 

EAF is a continuous production equipment that 
generally operates at its rated power. It also has a certain 
degree of operational flexibility. The operating 
characteristics of the electric arc furnace are described 
as: 

 
FEAF EAEAF.min EAF.ma  EF x A

tS D S    (20) 

 EAF EAF E
1

AF.max
t t tD D D−−   (21) 

 
FEAFEAF EA/t tS D =  (22) 

where EAF.min  and EAF.max  represent the EAF's 

minimum and maximum output percentages, 
respectively, 

EAF.max
tD  represents the full ramp-up 

power of the electric arc furnace, EAF  corresponds to 

the efficiency of steelmaking in the electric arc furnace. 

3. METHODOLOGY  

3.1 Description of the multi-period optimization model 
of HBSS 

3.1.1 Assumptions  

The following assumptions are made for the problem 
of multi-period optimization problems of HBSS setups: 

 Each machine is constrained in capacity. 
 There are no times for transportation of the 

products. 
 Shortages are not permitted. 
 There are no costs for shadow products. 

3.1.2 Objective function  

The objective function is to minimize the LCOS across 
the lifecycle ( n  years) of the system. The lifecycle is 
divided into N  periods, and the multi-period sequence 

S  is denoted as: 

  1 2, , , , ,i NS S S S S=  (23) 

where iS represents the i  th period, where 

1,2, ,i N= . 

The present value factor is denoted as: 

 (1 )k kR r −= +  (24) 

where k  is the number of years from when the cost 

occurs to the beginning of the planning period; kR is the 
present value factor for the k  th year; r  is the 
discount rate. The objective function can be described 
as: 
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where
inv
iC  represents the investment cost for the 

starting year of iS , ope
kC  represents the operational 

cost in the k th year, 
mai
kC , 

raw
kC , grid

kC ,
lab
kC , and

emi
kC

represents capital, maintenance, raw material, power 
purchase, labor, and emission costs in the k th year, 

respectively. nR  is the present value factor at the end of 
the planning period. RF represents the residual value of 

the equipment at the end of the planning period, as 
shown in formula (25): 

 ( ), ,
RV inv dep

1 1

NS M
i j i j

i j

F C C
= =

= −  (26) 

where M  is the total type amount of equipment. ,
inv
i jC  

and ,
dep
i jC are the investment cost and depreciation 

expense of equipment type j  within the i  th period 

respectively.  
3.1.3 Constraints  

HBSS is designed to satisfy the hourly steel demand, 
so balances on electricity, hydrogen, DRI/HBI, and steel 
demands are considered when scheduling HBSS 
operations. The energy balance constraints are 
described as shown in formula (26): 
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where 
WT
tP  and

PV
tP represent the power from wind and 

photovoltaic sources at the time t , respectively, 
N
tS  

denotes the hourly rated crude steel load demand of the 
HBSS system.  

The constraint of renewable energy penetration rate 
should also be considered, as shown in formula (27):  

 
8760 8760

WT PV WT PV grid
1 1

( ) / ( )t t t t t

t t

P P P P P
= =

= + + +   (28) 

where 1,2, ,8760t = . 

3.2 Solving the multi-period problem with rolling-
horizon 
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Based on the multi-period optimization model 
described above, the underlying time structure can be 
decomposed into multiple coupled optimization 

problems  0 , ,P P T [33], which can be defined below: 
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Each optimization problem belongs to a time period 

[T]: {0, ,T}t =  , where 0T . Each time period t, tP  

has a set of variables t  with start state variables 

defined on a domain t  and end-state variables t  

defined on a domain t . Interior variables tx  are 

neither start-state nor end-state variables and are 
defined on a domain tX . The start-state variables t  

and the end-state variables t  connect the current 

time period and the previous or subsequent time period, 
respectively. We assume that the end-state set of the 
current time period is contained in the start-state set of 
the subsequent period. 

We further define the multi-period problem ,tP   for

0 , Tt +  , starting at period t as 
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(30) 

The index μ can be suppressed if it is 0.  
The schematic depiction of the rolling horizon 

approach is shown in Fig.3. 

 
Fig.3. Schematic depiction of the rolling horizon approach 

The multi-period optimization model spans a time 
frame from 2025 to 2050. Employing the rolling-horizon 
approach, the underlying optimization problem is 
repeatedly modeled every five years, then solved, and 
then shifted forward by five years, while all variables 

slipping out of the decision horizon are considered fixed 
in subsequent iterations until the entire time horizon is 
passed through.  
4. RESULTS AND DISCUSSION  

4.1 Input data 

Capital and operational costs for the main 
equipment [24] are shown in Table 1 and Table 2. K-
means clustering algorithm was employed to cluster 
typical weekly wind and solar resources under each 
seasonal type (winter, summer, and other seasons). The 
generated values over a week in the three seasons are 
shown in Fig.4. The ToU electricity prices for summer, 
winter, and other seasons of the Jiangxi Province are 
shown in Fig. 5. 
Table.1 
Parameters of capital cost. 

Capital expenditure (CAPEX) in USD 

Component 
Period Start 

2025 2030 2035 2040 2045 

WT/kW 1594 1497 1401 1242 1083 

PV/kW 1091 957 823 646 468 

PEM/kW 1432 1142 852 646 441 

PEM efficiency/ kWh/kg 57.5 55.5 53.8 52.1 50.5 

Scrap ratio/% 20 30 40 50 60 

H2 Storage/kWh 18 

EAF/t per annum 285 

H2-SF/t per annum 355 

Table.2 
Parameters of operating cost. 

Operational expenditure (OPEX) in USD 

Renewable energy penetration 90% 

demand for steel 
8760 tonnes/ annum 

(1 tonne/hour) 

PEM Fixed OPEX 

3% of CAPEX/ annum H2-SF Fixed OPEX 

EAF Fixed OPEX 

H2 Storage Fixed OPEX 
1% of CAPEX/ annum 

HBI storage Fixed OPEX 

WT Fixed OPEX 28/kW/ annum 

PV Fixed OPEX 19/kW/ annum 

Labor 38.4/ tonne crude steel 

Emission price 50/ tC02 

Raw material for steelmaking  51/ tonne crude steel 

Iron ore (DR-grade pellets) 152/ tonne DRI 

Scrap iron 400/ tonne crude steel 

Direct emission factor from EAF 73 kgC02/ tonne crude steel 

Indirect emission factor from DRI 56 kgC02/ tonne crude steel 

Grid emission factor 0.5703/ tC02/kWh 
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Fig.4. WT and PV resource in different seasons  

 
Fig.5. ToU electricity pricing for different seasons 

All the computations were tested on a desktop 
computer with a CPU (2.50GHz) and 16.0GB RAM. 

4.2 Results and analysis 

The weekly and hourly resolutions of H2 storage and 
HBI storage are shown in Fig.6. The weekly resolution is 
observed within a typical winter week.  

 
(a) Weekly operational profile of H2 storage 

 

(b) Hourly operational profile of H2 and HBI storage 

Fig.6. Operation profile of H2 and HBI storage 

The regulatory functions of these two energy storage 
technologies are markedly different, primarily because 
of their varying adjustment time. Specifically, H2 storage 
modulates hydrogen production continuously 
throughout each week and hour. This adjustment 
maintains a balanced supply-demand equation for the 
H2-SF. On the other hand, HBI storage is strategically 
employed to ensure a consistent and reliable DRI supply 
for the EAF, thereby facilitating a stable and 
uninterrupted load supply. 

We conducted comparative experiments to compare 
the advantages of the rolling-horizon approach with the 
single-period approach and the forward-looking 
approach. The optimal result of LCOS and investment 
strategy of different equipment applied to different 
approaches are shown in Fig.7 and Fig.8.  

 
Fig.7. Optimal result of LCOS for different approaches applied 

to multi-period problems 

0 2 4 6 8 10 12 14 16 18 20 22 24

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

W
in

te
r

Hour/h

 Winter

Su
m

m
er

 Summer

O
th

e
r 

Se
as

o
n

s  Other Seasons

283.83

367.83 368.16

168.92
31.34 31.34

35.85

Single-Period Foraward-Looking Rolling-Horizion
0

100

200

300

400

500

600

406.5

520.1

 Capital Cost   Raw Material Cost   Power Purchase Cost

 Maintenance Cost   Labor Cost   Emission Cost

LC
O

S(
$

)

406.9



8 

 
Fig.8. Optimal investment results for different approaches 

applied to the multi-period problem 

It can be observed that the LCOS obtained from the 
forward-looking approach and the rolling-horizon 
approach are $406.5 and $406.9, differing by only 0.1%. 
In contrast, the LCOS obtained from the single-period 
approach is $520, significantly higher than the other two. 
Because the single-period approach does not consider 
the changing parameters within the future forecast 
horizon, leading to decisions that are not adaptable to 
the system's operational state over long periods. 

 
Fig.9. Runtime for different solution approaches applied to 

the multi-period problem 

Regarding computational efficiency, as shown in 
Fig.9, the runtime for the forward-looking approach is 
the longest. In contrast, the single-period approach has 
the shortest runtime but the worst economic-friendly 
solution. Using the sequential decision solved by the 
rolling-horizon approach, we can obtain a similar 
investment decision as the forward-looking approach in 
a more optimistic computational time. 

CONCLUSIONS 
Multi-stage optimization models can consider the 

impact of future decision periods, which aims to enhance 
the system's economic and environmental potential for 
a long time. This paper provided a multi-period 
optimization model for HBSS. It employed the rolling-
horizon approach to exploit the multi-period 
optimization problem into sequences of coupled 
optimization problems, which delivers provable near-
optimal solutions and significantly improves 
computational efficiency compared to the forward-
looking approach. 

In addition, forward parameters must be 
considered as uncertain in application settings. The 
rolling-horizon approach can adapt to future parameter 
changes by making periodic decisions. Hence, further 
research on this topic commits to considering 
uncertainty in application. As for our future work, it is of 
interest to research how the rolling-horizon approach 
can be extended so that it can hedge against 
uncertainties. 
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