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ABSTRACT 
 Ensuring a timely and appropriate supply of reactants 
is paramount for optimizing fuel cell performance. 
However, achieving precise reactant control depends on 
accurately determining the system's internal state. In 
this paper, the challenge of directly measuring the 
internal state of vehicular PEMFCs is addressed by 
proposing an adaptive internal state observer. Firstly, an 
air subsystem model with five state variables is 
established based on experimental data. This model 
effectively describes the critical dynamic features of air 
flow in the fuel cell system. Secondly, a cubature Kalman 
filtering algorithm is used to estimate the internal state 
of the cathode side of the PEMFC. To improve the 
algorithm's flexibility and minimize estimation errors 
caused by variations of model parameters, a forgetting 
factor is introduced, which dynamically adjusts the 
algorithm's parameters based on the changing 
conditions of the model. Finally, the simulation 
comparison demonstrates that the ACKF effectively 
mitigates the degradation of estimation accuracy with 
strong robustness as the variation of key structural 
parameters increases. The ACKF reduces the IAE to 
15.05% and 10.92% of the CKF when the selected 
structural parameters vary by 5%, and to 9.82% and 
4.87% respectively when the variation is 10%. 
 
Keywords: proton exchange membrane fuel cell, oxygen 
excess ratio, cubature Kalman filter, forgetting factor  

NONMENCLATURE 
Abbreviations  
 PEMFC 

OER 
EKF 
UKF 
CKF 
ACKF 
IAE 
ISE 

Proton Exchange Membrane Fuel Cell 
Oxygen Excess Ratio 
Extended Kalman filter 
Unscented Kalman filter 
Cubature Kalman filter 
Adaptive cubature Kalman filter 
Integral of absolute errors 
Integral of squared errors 

1. INTRODUCTION 
In the context of carbon neutral policy, new energy 

vehicles have gained unprecedented rapid progress[1], 
among which, proton exchange membrane fuel cell 
(PEMFC) vehicles have gained remarkable attention for 
their clean and efficient characteristics. The supply of 
reactants has a direct influence on the output 
characteristics of PEMFC[2–4]. If the supply of reactants 
is too low, it will easily lead to difficulty in responding to 
the changing load demand, which reduces the dynamic 
performance of the vehicle, the so-called reactant 
starvation phenomenon[5]; if there are too many 
reactants, it will increase the parasitic power of the 
PEMFC and reduce the overall efficiency. 

Compared to the hydrogen supply system, the air 
supply system, in which air is delivered into the cathode 
of the stack by an air compressor, has a much slower 
response time and is therefore more difficult to control. 
The air supply is indicated by the oxygen excess ratio 
(OER), defined as the ratio of the oxygen flow into the 
cathode and the oxygen in demand for the 
electrochemical reaction[6][7]. However, the calculation 
of the OER requires an accurate gas state internal to the 
cathode, which is difficult to obtain using sensors in 
actual systems[8]. Therefore, sensorless estimation 
algorithms become an effective solution to this problem. 

With the significant advantage of being able to 
achieve optimal state estimation, the Kalman filter is one 
of the most widely used observation algorithms in 
industry at present. The extended Kalman filter (EKF) 
achieves local linearization of nonlinear functions using 
Jacobi matrices on the basis of the basic KF, thus making 
the application of Kalman filter on nonlinear systems 
possible. Ma et al.[9] used EKF to obtain predictive 
parameters and thus predict the aging trend of the fuel 
cell. The unscented Kalman filter (UKF) solves the 
nonlinear transfer problem of mean and covariance 
based on the idea of approximating the probability 
density distribution of a nonlinear function, which avoids 
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the additionally introduced linearization error. Chen et 
al. [10]verified that UKF can estimate PEMFC's working 
state with high accuracy, and can improve PEMFC's 
economy in combination with energy management 
strategies. Some new Kalman filters are developed as 
well, such as the cubature Kalman filter combined with 
the spherical rule and the radial rule utilizing a set of 
equally weighted cubature points to approximate a 
Bayesian probability distribution. Yuan et al. [11] 
compared the estimation effect of UKF and CKF on 
PEMFC cathode state and concluded that CKF has higher 
accuracy and robustness. 

However, current related studies usually do not 
focus on the effect of system structural parameters. As 
the service life accumulates, the structural parameters of 
the PEMFC will gradually develop deviations from the 
nominal values, which will further increase the 
inconsistency between the model and the system, thus 
weakening the observational performance of the 
observer. In this paper, an adaptive CKF combined with a 
forgetting factor is proposed based on the judgment of 
structural parameter changes to cope with the challenge 
of model inconsistency. 

This paper is organized as follows: Section 2 
introduces the nonlinear dynamic model of the air supply 
system and describes the main characters of the key 
components. Section 3 introduces the judgment 
conditions of model structure changes, and the adaptive 
CKF observer based on forgetting factor under the 
condition of model changes is proposed. In Section 4 the 
estimation performance of ACKF under nominal 
structure parameters is verified, and the robustness of 
ACKF and traditional CKF is compared under the scenario 
of structure change. And the main contributions of this 
paper are summarized in Section 5. 

2. DYNAMIC MODELLING OF AIR SUBSYSTEM  

2.1 Model description 

 The proton exchange membrane fuel cell (PEMFC) 
displays highly coupled, nonlinear characteristics and 
comprises various system components illustrated in Fig. 
1. Among them, the air supply system plays the role of 
supplying the appropriate amount of air to maintain the 
load demand. Accordingly, in this section, to emphasize 
key attributes of the PEMFC while taking into account 
computational demands, this paper constructs a fifth-
order nonlinear dynamic model of the PEMFC with the 
air compressor speed, supply manifold pressure, oxygen 
and nitrogen partial pressures inside the cathode, and 
exhaust manifold pressure as state variables. 

2.1.1 Air compressor 

 The air compressor transfers external air into the air 
subsystem and adjusts the air flow rate according to the 
operating conditions, and its mechanical angular velocity 
𝜔𝜔𝑐𝑐𝑐𝑐  is calculated from the input torque 𝜏𝜏𝑐𝑐𝑐𝑐  and the 
load torque 𝜏𝜏𝑐𝑐𝑐𝑐, as shown in Eq. (1). 

𝑑𝑑𝜔𝜔𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

=
1
𝐽𝐽𝑐𝑐𝑐𝑐

�𝜏𝜏𝑐𝑐𝑐𝑐 − 𝜏𝜏𝑐𝑐𝑐𝑐� (1) 

where 𝐽𝐽𝑐𝑐𝑐𝑐 is the combined compressor motor inertia. 
𝜏𝜏𝑐𝑐𝑐𝑐 and 𝜏𝜏𝑐𝑐𝑐𝑐 are obtained from Eq. (2). 

⎩
⎪
⎨

⎪
⎧𝜏𝜏𝑐𝑐𝑐𝑐 =

𝜂𝜂𝑐𝑐𝑐𝑐𝐾𝐾𝑡𝑡
𝑅𝑅𝑐𝑐𝑐𝑐

�𝑢𝑢𝑐𝑐𝑐𝑐 − 𝐾𝐾𝑣𝑣𝜔𝜔𝑐𝑐𝑐𝑐�

𝜏𝜏𝑐𝑐𝑐𝑐 =
𝐶𝐶𝑐𝑐𝑇𝑇𝑎𝑎𝑡𝑡𝑐𝑐
𝜂𝜂𝑐𝑐𝑐𝑐𝜔𝜔𝑐𝑐𝑐𝑐

��
𝑝𝑝𝑠𝑠𝑐𝑐
𝑝𝑝𝑎𝑎𝑡𝑡𝑐𝑐

�
𝛾𝛾−1
𝛾𝛾
− 1�𝑊𝑊𝑐𝑐𝑐𝑐

(2) 

where 𝑢𝑢𝑐𝑐𝑐𝑐  is the input voltage; 𝐾𝐾𝑡𝑡 , 𝑅𝑅𝑐𝑐𝑐𝑐  and 𝐾𝐾𝑣𝑣  are 
the motor constants; 𝜂𝜂𝑐𝑐𝑐𝑐 and 𝜂𝜂𝑐𝑐𝑐𝑐 are the mechanical 
efficiency and the compressor efficiency; 𝐶𝐶𝑐𝑐  is the 
specific heat capacity of air; 𝑝𝑝𝑠𝑠𝑐𝑐  and 𝑝𝑝𝑎𝑎𝑡𝑡𝑐𝑐  are the 
pressure of supply manifold and atmosphere; 𝑇𝑇𝑎𝑎𝑡𝑡𝑐𝑐  is 
the atmosphere temperature; 𝛾𝛾  is the specific heats 
ratio of air. The air flow output from the compressor 𝑊𝑊𝑐𝑐𝑐𝑐 
is fitted as a polynomial function of 𝜔𝜔𝑐𝑐𝑐𝑐  and pressure 
ratio 𝑃𝑃𝑟𝑟  based on the experimental data, as shown in 
Fig. 2. 
𝑊𝑊𝑐𝑐𝑐𝑐 = 𝑎𝑎00 + 𝑎𝑎10𝜔𝜔𝑐𝑐𝑐𝑐 + 𝑎𝑎20𝜔𝜔2 + 𝑎𝑎01𝑃𝑃𝑟𝑟 + 𝑎𝑎02𝑃𝑃𝑟𝑟2

+𝑎𝑎11𝜔𝜔𝑐𝑐𝑐𝑐𝑃𝑃𝑟𝑟 (3) 

 
Fig. 1. PEMFC schematic diagram 
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2.1.2 Manifold system 

 The manifold system is used to transfer air to the 
cathode and exhaust it out of the air subsystem, which 
includes a supply manifold and an exhaust manifold, 
whose kinetic equations are shown in Eq. (4). 

⎩
⎨

⎧
𝑑𝑑𝑝𝑝𝑠𝑠𝑐𝑐
𝑑𝑑𝑑𝑑

=
𝛾𝛾𝑅𝑅𝑎𝑎𝑇𝑇𝑐𝑐𝑐𝑐
𝑉𝑉𝑠𝑠𝑐𝑐

�𝑊𝑊𝑐𝑐𝑐𝑐 −𝑊𝑊𝑠𝑠𝑐𝑐,𝑜𝑜𝑜𝑜𝑡𝑡�

𝑑𝑑𝑝𝑝𝑟𝑟𝑐𝑐
𝑑𝑑𝑑𝑑

=
𝑅𝑅𝑎𝑎𝑇𝑇𝑠𝑠𝑡𝑡
𝑉𝑉𝑟𝑟𝑐𝑐

�𝑊𝑊𝑐𝑐𝑎𝑎,𝑜𝑜𝑜𝑜𝑡𝑡 −𝑊𝑊𝑟𝑟𝑐𝑐,𝑜𝑜𝑜𝑜𝑡𝑡�
(4) 

where 𝑝𝑝𝑠𝑠𝑐𝑐 , 𝑝𝑝𝑟𝑟𝑐𝑐 , 𝑉𝑉𝑠𝑠𝑐𝑐 , 𝑉𝑉𝑟𝑟𝑐𝑐  are the pressure and the 
temperature of the supply manifold and the exhaust 
manifold; 𝑇𝑇𝑠𝑠𝑡𝑡 is the temperature of stack which equals 
353 K; 𝑇𝑇𝑐𝑐𝑐𝑐  is the temperature of air compressor; 
𝑊𝑊𝑠𝑠𝑐𝑐,𝑜𝑜𝑜𝑜𝑡𝑡 , 𝑊𝑊𝑐𝑐𝑎𝑎,𝑜𝑜𝑜𝑜𝑡𝑡  and 𝑊𝑊𝑟𝑟𝑐𝑐,𝑜𝑜𝑜𝑜𝑡𝑡  are the mass flow of 
the supply manifold outlet, the stack manifold outlet and 
the exhaust manifold outlet. 
2.1.3 Cathode flow model 

 Hydrogen ions react electrochemically with oxygen at 
the PEMFC cathode, and the dynamic equation for the 
cathodic side, assuming saturated water vapor, is shown 
in Eq. (5). 

�

𝑑𝑑𝑚𝑚𝑂𝑂2
𝑑𝑑𝑑𝑑

= 𝑊𝑊𝑂𝑂2,𝑖𝑖𝑖𝑖 −𝑊𝑊𝑂𝑂2,𝑜𝑜𝑜𝑜𝑡𝑡 −𝑊𝑊𝑂𝑂2,𝑟𝑟𝑐𝑐𝑡𝑡

𝑑𝑑𝑚𝑚𝑁𝑁2
𝑑𝑑𝑑𝑑

= 𝑊𝑊𝑁𝑁2,𝑖𝑖𝑖𝑖 −𝑊𝑊𝑁𝑁2,𝑜𝑜𝑜𝑜𝑡𝑡

(5) 

where 𝑚𝑚𝑂𝑂2 ,𝑚𝑚𝑁𝑁2  represent the mass of the oxygen, 
nitrogen in the cathode; 𝑊𝑊𝑂𝑂2,𝑖𝑖𝑖𝑖 , 𝑊𝑊𝑁𝑁2,𝑖𝑖𝑖𝑖 , 𝑊𝑊𝑂𝑂2,𝑜𝑜𝑜𝑜𝑡𝑡 , 
𝑊𝑊𝑁𝑁2,𝑜𝑜𝑜𝑜𝑡𝑡 are respectively the mass flow rates of oxygen 
and nitrogen into and out of the cathode; 𝑊𝑊𝑂𝑂2,𝑟𝑟𝑐𝑐𝑡𝑡 is the 
mass flow of oxygen consuming in the reaction, which 
can be calculated as Eq. (6). 

𝑊𝑊𝑂𝑂2,𝑟𝑟𝑐𝑐𝑡𝑡 = 𝑀𝑀𝑂𝑂2
𝑛𝑛𝐼𝐼𝑠𝑠𝑡𝑡
4𝐹𝐹

(6) 

where 𝑀𝑀𝑂𝑂2 is the molar mass of oxygen; 𝑛𝑛  is the 
number of cells in the stack; 𝐼𝐼𝑠𝑠𝑡𝑡  is the demanded 
current; 𝐹𝐹 is the Faraday constant. 
 The details of the dynamic model can be found in 
Ref.[12]; this paper will not elaborate further. 

2.2 Problem statement 

 From the above analysis, it is evident that the 
nonlinear relationship between the different 
components of the air supply system can be represented 
as a differential equation, as illustrated in Eq. (7). 

��̇�𝑥 = 𝐹𝐹(𝑥𝑥) + 𝐺𝐺 ∙ 𝑢𝑢 + 𝐷𝐷 ∙ 𝑑𝑑
𝑦𝑦 = 𝐻𝐻(𝑥𝑥) (7) 

where 𝑥𝑥 = [𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4,𝑥𝑥5]𝑇𝑇 =
�𝜔𝜔𝑐𝑐𝑐𝑐,𝑝𝑝𝑠𝑠𝑐𝑐,𝑚𝑚𝑂𝑂2 ,𝑚𝑚𝑁𝑁2 ,𝑝𝑝𝑟𝑟𝑐𝑐�

𝑇𝑇 ∈ ℜ5  is the system states 
vector; the 𝐹𝐹(𝑥𝑥) ∈ ℜ5  represents the nonlinear 

dynamic process of the system; the 𝑦𝑦 = [𝑥𝑥1,𝑥𝑥2,𝑥𝑥5]𝑇𝑇 ∈
ℜ3 represents the system status that can be measured 
by the sensor and provided to CKF; 𝑢𝑢 = 𝑢𝑢𝑐𝑐𝑐𝑐  is the 
operation variable and 𝑑𝑑 = 𝐼𝐼𝑠𝑠𝑡𝑡  is the measurable 
disturbance. 

3. ADAPTIVE CKF OBSERVER 

3.1 Cubature Kalman filter  

 The significant advantage of the CKF algorithm over 
the EKF is that it does not rely on Jacobi matrices and 
therefore is not restricted to the form of nonlinear 
functions, making it particularly suitable for applications 
to complex high-dimensional systems. Meanwhile, for 
fifth-order systems, CKF shows greater advantages than 
UKF in terms of filtering accuracy and numerical stability. 
 The recursive formulation of the Bayesian filtering 
algorithm has the expression form shown in Eq. (8). 

𝐼𝐼(𝑓𝑓) = �𝑓𝑓(𝑥𝑥) exp(−𝑥𝑥𝑇𝑇𝑥𝑥)𝑑𝑑𝑥𝑥 (8) 

where exp(−𝑥𝑥𝑇𝑇𝑥𝑥)  represents the Gaussian density 
function. 
 The CKF algorithm transforms Eq. (8) into Spherical-
Radial form, let 𝑥𝑥 = 𝑟𝑟𝑟𝑟 and 𝑟𝑟𝑇𝑇𝑟𝑟 = 1, then 𝑥𝑥𝑇𝑇𝑥𝑥 = 𝑟𝑟2. 
Eq. (8) can be rewritten in the form of Eq. (9). 

𝐼𝐼(𝑓𝑓) = � � 𝑓𝑓(𝑟𝑟𝑟𝑟)𝑟𝑟𝑖𝑖−1 exp(−𝑟𝑟2)𝑑𝑑𝑑𝑑(𝑟𝑟)𝑑𝑑𝑟𝑟
𝑈𝑈𝑛𝑛

∞

0
(9) 

where 𝑈𝑈𝑖𝑖  is the surface of an n-dimensional sphere; 
and 𝑑𝑑(∙) represents the spherical metric. 
 Combining the third-order spherical rule and the 
radial rule, the numerical calculation of Eq. 9 is shown in 
Eq. (10). 

𝐼𝐼(𝑓𝑓) ≈� 𝜔𝜔(𝑖𝑖)𝑓𝑓(𝜉𝜉𝑖𝑖)
𝑐𝑐

𝑖𝑖=1
(10) 

where 𝑚𝑚 is the number of the cubature points; 𝜔𝜔(𝑖𝑖) =
1
𝑐𝑐

 is the weighting coefficients; the 𝜉𝜉𝑖𝑖  is the cubature 
points. For a more detailed derivation of the procedure 
refer to Ref.[13]. 
 The main process of CKF algorithm includes the 
following four steps： 
 Step1: Initialize the state and covariance： 

𝑥𝑥�0+ = 𝐸𝐸(𝑥𝑥0) (11 𝑎𝑎) 
𝑃𝑃0+ = 𝐸𝐸[(𝑥𝑥0 − 𝑥𝑥�0)(𝑥𝑥0 − 𝑥𝑥�0)𝑇𝑇] (11 𝑏𝑏) 

 Step2: Calculate cubature points and update state 
and covariance prior estimate: 

𝜒𝜒𝑘𝑘|𝑘𝑘
(𝑖𝑖) = 𝑥𝑥�𝑘𝑘+ + 𝑈𝑈𝑘𝑘�𝑆𝑆𝑘𝑘𝜉𝜉𝑖𝑖 (12 𝑎𝑎) 

𝑥𝑥𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) = 𝐹𝐹 �𝜒𝜒𝑘𝑘|𝑘𝑘

(𝑖𝑖) ,𝑢𝑢𝑘𝑘 , 𝐼𝐼𝑘𝑘� (12 𝑏𝑏) 

𝑥𝑥�𝑘𝑘+1− = �𝜔𝜔(𝑖𝑖)𝑥𝑥𝑘𝑘+1|𝑘𝑘
(𝑖𝑖)

2𝑖𝑖

𝑖𝑖=1

(12 𝑐𝑐) 
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𝑃𝑃𝑘𝑘+1− = �𝜔𝜔(𝑖𝑖) �𝑥𝑥𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) − 𝑥𝑥�𝑘𝑘+1− � �𝑥𝑥𝑘𝑘+1|𝑘𝑘

(𝑖𝑖) − 𝑥𝑥�𝑘𝑘+1− �
𝑇𝑇

2𝑖𝑖

𝑖𝑖=1
+𝑄𝑄𝑘𝑘                                                                    (12 𝑑𝑑)

 

 Step3: Calculate the cubature points of the output 
equation and update the covariance and cross-
covariance: 

𝜒𝜒𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) = 𝑥𝑥�𝑘𝑘+1− + 𝑈𝑈𝑘𝑘+1− �𝑆𝑆𝑘𝑘+1− 𝜉𝜉𝑖𝑖 (13 𝑎𝑎) 

𝑦𝑦𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) = 𝐻𝐻 �𝜒𝜒𝑘𝑘+1|𝑘𝑘

(𝑖𝑖) � (13 𝑏𝑏) 

𝑦𝑦�𝑘𝑘+1− = �𝜔𝜔(𝑖𝑖) ∙ 𝑦𝑦𝑘𝑘+1|𝑘𝑘
(𝑖𝑖)

2𝑖𝑖

𝑖𝑖=1

(13 𝑐𝑐) 

𝑃𝑃𝑦𝑦𝑦𝑦,𝑘𝑘+1 = �𝜔𝜔(𝑖𝑖) �𝑦𝑦𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) − 𝑦𝑦�𝑘𝑘+1− � �𝑦𝑦𝑘𝑘+1|𝑘𝑘

(𝑖𝑖) − 𝑦𝑦�𝑘𝑘+1− �
𝑇𝑇

2𝑖𝑖

𝑖𝑖=1
+𝑅𝑅𝑘𝑘                                                               (13 𝑑𝑑)

 

𝑃𝑃𝑥𝑥𝑦𝑦,𝑘𝑘+1 = �𝜔𝜔(𝑖𝑖) �𝑥𝑥𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) − 𝑥𝑥�𝑘𝑘+1− � �𝑦𝑦𝑘𝑘+1|𝑘𝑘

(𝑖𝑖) − 𝑦𝑦�𝑘𝑘+1− �
𝑇𝑇

2𝑖𝑖

𝑖𝑖=1
                                                                                           (13 𝑒𝑒)

 

 Step4: Calculate the Kalman gain and the posterior 
estimate: 

𝐾𝐾𝑘𝑘+1 = 𝑃𝑃𝑥𝑥𝑦𝑦,𝑘𝑘+1 ∙ 𝑃𝑃𝑦𝑦𝑦𝑦,𝑘𝑘+1
−1 (14 𝑎𝑎) 

𝑥𝑥�𝑘𝑘+1+ = 𝑥𝑥�𝑘𝑘+1− + 𝐾𝐾𝑘𝑘+1(𝑦𝑦𝑘𝑘+1 − 𝑦𝑦�𝑘𝑘+1− ) (14 𝑏𝑏) 
𝑃𝑃𝑘𝑘+1+ = 𝑃𝑃𝑘𝑘+1− − 𝐾𝐾𝑘𝑘+1𝑃𝑃𝑦𝑦𝑦𝑦,𝑘𝑘+1𝐾𝐾𝑘𝑘+1𝑇𝑇 (14 𝑐𝑐) 

where 𝑄𝑄𝑘𝑘  and 𝑅𝑅𝑘𝑘  are the noise variance; 𝑆𝑆𝑘𝑘 and𝑈𝑈𝑘𝑘   
are the diagonal and orthogonal matrices for SVD 
decomposition of covariance 𝑃𝑃𝑘𝑘+. 

3.2 Adaptive process 

 Considering the influence of environmental factors 
and cumulative service time, the structural parameters 
of PEMFC will change to some extent, and the traditional 
CKF method is difficult to maintain its estimation 
accuracy in the case of time-varying structural 
parameters. Therefore, it is necessary to introduce an 
adaptive process to ensure the estimation performance 
of the algorithm by adjusting the algorithm parameters 
in real time. 
 The change of actual structural parameters will cause 
a significant increase in the observation error 𝜀𝜀 in CKF. 
Therefore, a judgement parameter 𝛿𝛿  based on the 𝜀𝜀 
and covariance 𝑃𝑃𝑦𝑦𝑦𝑦  can be constructed to determine 
whether the structural parameter shift has occurred, as 
shown in Eq. (15). When 𝛿𝛿 is greater than the set value 
𝛿𝛿0, it can be considered that the model parameters have 
changed. 

𝛿𝛿𝑘𝑘 = 𝜀𝜀𝑘𝑘𝑇𝑇�𝑃𝑃𝑦𝑦𝑦𝑦,𝑘𝑘�
−1𝜀𝜀𝑘𝑘 (15) 

where 𝜀𝜀𝑘𝑘 = 𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘−. 
 The adaptive process consists of two parts: the 
judgment process and the introduction of forgetting 

factor. The complete logic of adaptive CKF algorithm is 
shown in Fig. 3. 
 Step5: Update noise variance: 

𝐿𝐿𝑘𝑘+1 = �𝜔𝜔(𝑖𝑖) �𝑦𝑦𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) − 𝑦𝑦�𝑘𝑘+1− � �𝑦𝑦𝑘𝑘+1|𝑘𝑘

(𝑖𝑖) − 𝑦𝑦�𝑘𝑘+1− �
𝑇𝑇

2𝑖𝑖

𝑖𝑖=1
                                                                                           (16 𝑎𝑎)

 

 
𝑅𝑅𝑘𝑘+1 = 𝛼𝛼𝑅𝑅𝑘𝑘 + (1 − 𝛼𝛼)�𝜀𝜀𝑘𝑘𝜀𝜀𝑘𝑘𝑇𝑇 + 𝐿𝐿k+1� (16 𝑏𝑏) 

4. RESULTS AND DISCUSSION 

4.1 Estimation effect  

 To verify the estimation effect of the proposed 
observer, a simulation scenario is set up as shown in Fig. 
4. The scenario involves loading and unloading of the 
OER reference and load current, and the effect of current 
disturbance is taken into account while evaluating the 
estimation capability of the observer for OER. In this 
paper, the conventional CKF is used as a comparison 
algorithm to show the outstanding superiority of the 
improved content. The gas state within the cathode 
cannot be measured in the actual system. To assess the 
performance of ACKF observation, the PEMFC state 
variables are calculated analytically in the simulation 
model, which provides the estimation error of the 
observer. Fig. 5 shows the estimation of the oxygen and 

 
Fig. 3. Logic diagram of the adaptive CKF algorithm 

 
Fig. 4. OER setpoints and load current 
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nitrogen mass inside the cathode and the OER values 
reconstructed by both observers. 
 As shown in Fig. 5, when the structural parameters of 
the system are nominal values, the estimation effects of 
ACKF and CKF are approximate, and both are able to 
close the real value of the system. In terms of the 
reconstructed OER, the integral of absolute errors (IAE) 
of ACKF and CKF are 0.0969 and 0.1111, respectively, and 
the integral of squared errors (ISE) are 0.0011 and 
0.0023, which shows that the estimation effect of ACKF 
is slightly better than that of CKF. In terms of estimating 
the mass of oxygen and nitrogen, the results of ACKF and 
CKF are basically the same, and the IAE and ISE of oxygen 
estimation are 3.198×10-5, 1.027×10-4 and 8.925×10-11, 
1.060×10-9, respectively. The IAE and ISE for nitrogen are 
3.044×10-5, 4.448×10-5, and 7.748×10-11, 2.304×10-10 
respectively. 

Meanwhile, from Fig. 5(a), the variation of load 
current has a greater impact than the step change of OER 
setpoints. At the 6th and 10th seconds, the current change 
is 40A, and the OER of the system shows a large 
fluctuation, which is caused by the definition of OER. The 
load current affects the oxygen mass consumed at the 
cathode, thus leading to sudden changes in the OER 
values.  

4.2 Robust performance 

The structural parameters have a great influence on 
the operation of the actual system. To verify the 

estimation effect of the proposed ACKF in the case of 
changing structural parameters, this paper takes the flow 
factor 𝑘𝑘𝑠𝑠𝑐𝑐 and 𝑘𝑘𝑟𝑟𝑐𝑐 , which are used to calculate the 
gas flow into and out of the cathode, as the structural 
parameter to be adjusted, and sets them to 1, 0.95 and 
0.9, respectively, and compares the estimation effects of 
the traditional CKF and ACKF. The formula associated 
with 𝑘𝑘𝑠𝑠𝑐𝑐  and 𝑘𝑘𝑟𝑟𝑐𝑐  is shown in Eq. (17). Fig. 6 shows 
the estimation performance of the two observers with 
different result parameters. 
 

�
𝑊𝑊𝑠𝑠𝑐𝑐,𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑘𝑘𝑠𝑠𝑐𝑐(𝑝𝑝𝑠𝑠𝑐𝑐 − 𝑝𝑝𝑐𝑐𝑎𝑎)
𝑊𝑊𝑐𝑐𝑎𝑎,𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑘𝑘𝑟𝑟𝑐𝑐(𝑝𝑝𝑐𝑐𝑎𝑎 − 𝑝𝑝𝑟𝑟𝑐𝑐) (17) 

where 𝑝𝑝𝑠𝑠𝑐𝑐 , 𝑝𝑝𝑐𝑐𝑎𝑎  and 𝑝𝑝𝑟𝑟𝑐𝑐  are pressure in supply 
manifold, cathode and exhaust manifold, respectively. 

It can be intuitively judged from Fig. 6 that when 
𝑘𝑘𝑠𝑠𝑐𝑐 and 𝑘𝑘𝑟𝑟𝑐𝑐 change, CKF has a significant estimation 
deviation, and the deviation caused by 𝑘𝑘𝑟𝑟𝑐𝑐  is more 
obvious under the same variation amplitude. The ACKF 
can follow the true value of the system with a smaller 
error. The errors under different structural parameters 
are shown in Table 1. 
Table 1. Errors for different structural parameters 

Structural 
parameter IAE ISE 

 CKF ACKF CKF ACKF 
Nominal 

value 0.0753 0.0593 8.5366×10-4 4.7437×10-4 

𝑘𝑘𝑠𝑠𝑐𝑐 = 0.95 1.5110 0.2274 0.1545 0.0050 
𝑘𝑘𝑠𝑠𝑐𝑐 = 0.9 3.1718 0.3116 0.6782 0.0100 
𝑘𝑘𝑟𝑟𝑐𝑐 = 0.95 2.4874 0.2715 0.4175 0.0072 
𝑘𝑘𝑠𝑠𝑐𝑐 = 0.9 5.1684 0.2519 1.7987 0.0059 

 
Fig. 5. Estimation of OER, oxygen and nitrogen 
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Fig. 6. Robust to structural parameters 
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The model differences caused by the structural 
parameters can be more intuitively seen through the 
judgment parameters. Taking the variation of 𝑘𝑘𝑠𝑠𝑐𝑐 as an 
example, the determination parameters of traditional 
CKF and ACKF when 𝑘𝑘𝑠𝑠𝑐𝑐  takes different values are 
shown in Fig. 7. It is obvious that when the variation of 
𝑘𝑘𝑠𝑠𝑐𝑐 is larger, the increase of the judgment parameters 
in the CKF algorithm is more significant. In the ACKF 
algorithm, due to the existence of adaptive process, the 
difference of the model is corrected in time, so the value 
of the judgment parameter is limited to the specified 
range. 

5. CONCLUSIONS 
 In this paper, a fifth-order nonlinear dynamic model 
of air subsystem is established based on bench test data, 
and an adaptive CKF based on model judgment is 
proposed. The judgment parameter is used to determine 
whether the model structure has changed, and the 
forgetting factor is introduced to adjust the CKF 
parameters to eliminate the inconsistency of the model. 
Simulation comparison shows that ACKF has slightly 
better estimation performance than traditional CKF 
under nominal structural parameters, and excellent 
robustness under varying structural parameters, making 
IAE lower than 0.5 under different structural parameters. 
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