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ABSTRACT

Short-term electricity trading on intraday markets is

crucial for integrating variable renewable energy in the

power system. For instance, it allows energy suppliers

to adjust their market positions based on updated vari-

able renewable energy and consumption forecasts, re-

ducing their potential imbalances. In the case of Ger-

many, the continuous intraday market allows trading

from the day before delivery until several minutes be-

fore delivery. However, the complex market design and

high price volatility make developing price forecasting

models challenging. This paper lays a foundation for

price forecasting by comparing baseline models used to

benchmark rolling continuous intraday price forecasts.

These baselines help develop price forecasting models

as they serve as a reference for these models. We also

adapt a price normalization approach from the litera-

ture to benchmark price forecasts in a volatile market

environment. Our baselines include the generalization

of two baselines used in literature and one new base-

line. We benchmark our baselines throughout 2021 and

2022. Among other baselines, we find that the price

average of the last four trades yields the lowest root

mean squared error. Moreover, the analysis suggests

that baseline errors are independent of themarket price

development through normalization.

Keywords: machine learning, electricity price forecast-

ing, continuous intraday market

NOMENCLATURE

Abbreviations

CID continuous intraday

DA day-ahead

EPEX European Power Exchange

EPF electricity price forecasting

MW megawatt

PV photovoltaic

SDAT Single Delivery Area Trading

SIDC Single Intraday Coupling

VRE variable renewable energy

XBID Cross-Border Intraday Market

Symbols

(s, `) product starting delivery at s
with a length of `

P s,`
k price of trade k in product (s, `)

Rs,`
u,γ regression target for product

(s, `) of horizon length γ at

forecasting time u

V s,`
k volume of trade k in product

(s, `)
` product length

Bu,ω time interval [u− ω, u)

Ss,`
u,ω set of trades in product (s, `)

during interval [u− ω, u)
T s,` set of trades in product (s, `)

Us,`
γ set of forecasting times for

product (s, `) and horizon

length γ
s delivery start

1. INTRODUCTION

In recent years, the European Union has introduced

continuous intraday (CID) markets. They allow market

participants, e.g., energy suppliers, to adjust their po-

tential energy imbalances - the difference between the

anticipated and the actual energy required. These im-

balances are caused mainly by intermittent variable re-

newable energy (VRE) production [1]. A CID market in

the European context is a continuous trading platform

where trading is possible after the day-ahead (DA) auc-

tion until several minutes before delivery [2]. For in-

stance, participants in the German CIDmarket can trade

electricity up to a few minutes before actual power de-

livery. In view of their real importance at the technical

and economic level in the electricity system, we have

noticed that the literature on CID price forecasting is

scarce. The existing literature on CID electricity price

forecasting (EPF)mainly focuses on the predictionof sin-

gle aggregate CID price measures, i.e., averages of com-

pleted CID trades [3, 4]. Even less literature focuses on

continuous price forecasts within trading sessions [5, 6,

7]. Further, to our knowledge, no existing literature ex-

plores and compares different baseline models, which

Energy Proceedings
Vol 38, 2024

ISSN 2004-2965

____________________

# This is a paper for 15th International Conference on Applied Energy (ICAE2023), Dec. 3-7, 2023, Doha, Qatar.



are critical to developing CID EPFmodels. Baselinemod-

els are simple models against which one can compare

more complex models. For the CID market, baseline

model designs can be based on economic price theory,

which states that current prices fully reflect available in-

formation in efficient markets [8]. However, it remains

unclear how to extract optimal price information from

the most recent transactions, i.e., whether the price of

the most recent transaction is the best estimate or if in-

cluding further transaction prices is beneficial. In ad-

dition, market volatility, such as that observed in 2021

and 2022 [9], presents an additional difficulty in design-

ing baselines since popular error measures such as the

root mean squared error (RMSE) are highly sensitive to

volatile data. The availability of baselines that are ro-

bust to price volatility is crucial to ensure the quality

of machine learning (ML)/artificial intelligence (AI) fore-

casting models and to enable the comparability of the

performance over time and between models from dif-

ferent publications [10]. Normalization techniques can

help to reduce data volatility. Existing literature on price

data normalization only covers DAmarkets [11] and can-

not be applied to CID markets, as price data differs due

to different market designs. While an auction clears the

DAmarket, yielding a single price for every product, the

CID market is continuous, yielding a series of transac-

tion prices for every product. Further, in the CIDmarket,

price volatility increases along the trading window [12].

In summary, given the identified gaps: 1) the lack of a

systematic comparisonof different baselines for CID EPF,

and 2) the lack of literature on price data normalization

for the CID market, we contribute with the following:

1. We explore existing literature to gather currently

used baselines and generalize these to obtain two

baseline designs.

2. We propose one new baseline design, combining

and extending the available baselines in the litera-

ture.

3. We compare all baselines by evaluating their re-

gression accuracy at several horizons using differ-

ent metrics.

4. We adapt and adopt a price normalization ap-

proach for CID prices to enable the comparability

of baseline models over time in a volatile market

environment. The approach adapts to the volatil-

ity within a trading session for a single product and

across products.

We base our study on completed CID trades of hourly

products bought or sold in all German balancing zones

during 2021 and 2022 on the European Power Exchange

(EPEX) Spot market.

Overall, as a regression model baseline, the average

of the four most recently completed trades performs

well over the different forecast horizons. Further analy-

sis indicates that the baseline performance is indepen-

dent of market price increases.

Going forward, we introduce the German wholesale

power market in section 2. Afterward, we discuss re-

lated work on the topic of EPF in section 3. We explain

our normalization approach and baselinemodels in sec-

tion 4. We provide a detailed analysis of our empirical

comparison results in section 5. Finally, we conclude

and provide an outlook in section 6.

2. BACKGROUND

The following section introduces the German spot

market for electricity, which allows trading during the

last hours before physical power delivery. Note that we

focus on Germany, as it has the largest CIDmarket in Eu-

rope by traded volume. Nevertheless, the market de-

scription and findings of the paper are also applicable

to similar markets covered by the EPEX due to a similar

market design [13]. The spot market is a short-term fu-

turemarketwith two stages: an auction stage and a con-

tinuous stage, during which price clearing differs. The

contracts traded on the spot market are commitments

to deliver a specific volume of electricity in megawatt

(MW) during a fixed time interval. Contracts with a

length of 60min, i.e., hourly products, and contracts

with a length of 15min, i.e., quarter-hourly products,

dominate themarket in Germany. Regarding traded vol-

ume, hourly products dominate both the auction and

the continuous stage in Germany [13]. In our paper, we

focus on the continuous trading of hourly products.
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Fig. 1 Overview of CID trading for hourly products in

Germany.

Figure 1 provides an overview of the trading process

for hourly products in Germany. On the day before de-

livery at 12 PM, market participants can participate in

the “DA auction” for hourly products. Note that an-

other auction, called the “intraday auction”, takes place

three hours later at 3 PM for quarter-hourly products.

The merit order principle used for the auction clear-

ing determines prices in these two auctions. After-

ward, the CID market gate opens at 3 PM for hourly
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products and at 4 PM for quarter-hourly products. The

CID market is a continuous market where the partici-

pants submit “bids” and “asks” continuously to deter-

mine clearing prices. “Bids” are prices at which buy-

ers are willing to buy, while “asks” are prices at which

sellers are willing to sell. At market opening time, the

Single Intraday Coupling (SIDC) mechanism couples Eu-

ropean countries, meaning that participants can buy

and sell power from other participating European coun-

tries. One hour before delivery, the SIDC gate closure

limits transactions to participants within the German-

Luxembourgish bidding zone [14, 15]. In other words,

markets that are not in the same bidding zone decou-

ple. Note that the frequently used term Cross-Border

Intraday Market (XBID) refers to the technical imple-

mentation of the SIDC. Afterward, only buyers and sell-

ers within the German-Luxembourgish bidding zone can

trade with each other. Half an hour later, the Single De-

livery Area Trading (SDAT) gate opening decouples the

German-Luxembourgish bidding zone, which restricts

trading to within each of the four control areas in Ger-

many until the CID market closes five minutes before

delivery. Since trading for all daily CID products of the

same length starts simultaneously, but delivery begins

at different times for each product, the trading interval

lengths differ. For instance, an hourly product with a de-

livery starting at 3 AM trades one hour longer on the CID

as a product with a delivery starting at 2 AM. For a more

comprehensive description, readers can refer to more

detailed market descriptions [2, 15, 16].

Table 1 collects the market liquidity analysis of hourly

products using two different metrics, i.e., the share of

volume traded and the percentage of completed trades.

Our analysis of 2021 and 2022 CID trading data from

EPEX [13] shows that over 65% of volume and 68% of

trades occur during the last three hours before delivery.

When also excluding the trades within the last 30min
before delivery, these figures drop to 59% for volume

traded and 62% for total trades. The market is most

liquid during the last three hours before delivery since

most trading occurs during this interval. Consequently,

we limit ourselves to the last three hours before delivery

for the remainder of the paper. Additionally, we exclude

the last 30min before delivery because the restriction

of trading within control areas does not allow for a sin-

gle Germany-wide analysis.

3. RELATED WORK

A large body of literature exists on the general topic

of EPF. Weron [17] reviews the literature on EPF for

DA markets and covers forecasting approaches such as

fundamental models, statistical models, and computa-

tional intelligence models. The author identifies the

benefit of fundamental models not in their forecasting

Table 1 Liquidity of hourly products during the last

three hours before delivery.

Year Volume share Trade count share

full 3h
excluding

last 30min full 3h
excluding

last 30min

2021 65.73% 59.74% 68.76% 62.82%

2022 66.54% 59.32% 70.83% 64.21%

accuracy but in their ability to depict market charac-

teristics. The author further concludes that computa-

tional intelligencemodels are better able to handle non-

linearity than statistical models. While Weron [17] fo-

cuses on point forecasts, other authors consider proba-

bilistic price forecasts for the DAmarket Nowotarski and

Weron [18].

Hong et al. [19] analyze the best solutions for prob-

abilistic EPF submitted to the Global Energy Forecast-

ing Competition 2014 (GEFCom2014). The context of

the competition allowed a direct comparison of differ-

ent forecasting methods. The best-ranked teams ei-

ther use Neural Networks (NNs) or use quantile re-

gression in combination with other regression meth-

ods. The literature review on the topic of probabilis-

tic EPF by Nowotarski and Weron [18] confirms the su-

perior performance of quantile regression-based mod-

els. However, it questions NNs’ reliability, since in their

study, the NNs underperform for extended test periods.

The expansion of CID electricity markets in Europe

during the last decade has opened a new field of study

in the context of EPF. Shinde and Amelin [20] review

general literature on intraday markets and prices. They

find that most literature focuses on European markets

and that the expansion of wind power is one of the

drivers behind the introduction of CID markets. Lit-

erature provides different methodological approaches,

such as econometric methods, point forecasting, and

continuous forecasting.

Starting with econometric methods, various studies

investigate different market properties from the eco-

nomic point of view. More specifically, Kiesel and

Paraschiv [21] analyze the prices of 15min products.

They find that prices adjust asymmetrically to VRE fore-

casting errors. In other words, when the forecasted

VRE production volumes increase, CID prices tend to

fall and vice versa, making VRE production forecasts a

potentially valuable feature for price forecasting. Like-

wise, Kremer, Kiesel, and Paraschiv [22] study 15min
contracts, for which they build a fundamental model to

assess how the trading depends on the slope of their

empirically estimated merit order curve of the market.

They find that prices of neighboring products, i.e., prod-

ucts with delivery just before or after the current prod-
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uct, have strong explanatory power for the price of the

current product and that renewable forecast changes

have an asymmetric effect on prices depending on the

slope of the merit order curve. Kremer, Kiesel, and

Paraschiv [23] study 15min products as well, but they

focus on the prices of 15min contracts during night

hours. They conclude that during the night, fundamen-

tals such as VRE forecasts lose importance for EPF be-

cause price information drives the market.

Other publications focus on EPF beyond econometric

studies. In the context of the CID market, two lines of

research emerge.

First, the literature covers point forecasts for the CID,

where the authors forecast a single price average for ev-

ery product. One such average is the ID3 price, which

one can compute for every contract by averaging all

trades between 3h and 30min before delivery [24]. The

advantage of averaging is that by calculating a single

price value for every contract, one obtains a time se-

ries of prices at the frequency of the contracts. One can

then apply traditional time series forecasting methods

for EPF. For instance, Kath and Ziel [25] forecast DA and

full averages of CID prices and estimate the monetary

benefit of using forecasts. Further, Uniejewski, Marc-

jasz, and Weron [26] apply the least absolute shrink-

age and selection operator (LASSO) method to select

explanatory variables for CID ID3 prices. The most im-

portant variable in their model is the most recent intra-

day price. They also find clear economic benefits when

applying simple trading strategies to their forecasting

approach, exhibiting market inefficiency. The studies

by Narajewski and Ziel [3] and by Marcjasz, Uniejewski,

and Weron [4] forecast the ID3 price. Narajewski and

Ziel [3] study 60min and 15min contracts and find in-

dications of weak-form market efficiency. In contrast,

Marcjasz, Uniejewski, and Weron [4] study 60min con-

tracts and dispute the claims of market efficiency.

Second, studies on continuous or path forecasts for

CID prices exist. They consider trades in every contract

as separate time series. Forecasting, therefore, focuses

on the price changes while trading a single product, as

opposed to price differences between different prod-

ucts. For instance, Scholz et al. [5] propose a model for

CID EPF based on a rolling window approach. They train

a NN and a gradient-boosting algorithm to forecast the

future price trajectory. Similarly, Narajewski and Ziel [6]

apply ensemble forecasting to simulate price trajecto-

ries of the CID market. The difference is that the au-

thors obtain a probabilistic price forecast by simulating

many price trajectories. Serafin, Marcjasz, and Weron

[7] also propose a short-term probabilistic path fore-

casts model. Instead of simulating different paths of the

CID price, they predict the price distribution by combin-

ing path and probabilistic forecasts.

In summary, the topic of CID EPF has considerable

study potential since, so far, most studies focus on fore-

casting aggregate price measures such as the ID3. Only

one study applies a rolling window approach for CID

EPF [5], two others propose short-term probabilistic

forecasts [6, 7]. No study addresses the recent mar-

ket volatility in the context of EPF. Further, literature

does not yet address baseline selection for CID EPF. In

our study, we contribute to bridging these gaps by com-

paring baselines for CID price forecast benchmarking in

combination with a price normalization approach to ad-

dress market volatility.

4. METHODS AND MODELS

The upcoming section covers our data processing ap-

proach, which leads to the computation of baselines

and the configuration of ML/AI regression models. Sec-

tion 4.1 introduces the basic notation used throughout

the paper. Section 4.2 explains our data normalization

approach, which is the first step for data processing. Af-

terward, we compute the targets in section 4.3 and the

baselines in section 4.4.

4.1 General Notation

We introduce a notation to describe and aggregate

CID prices, which we later rely on to define the base-

lines. Our notation expands the notation introduced

byNarajewski and Ziel [3]. Startingwith the definition of

products, tet the tuple (s, `) denote a product starting

delivery at s with a length of `. Products are contracts

for the delivery of electricity during a specific time in-

terval, such as the hourly products that we study. The

delivery interval of the product (s, `) is [s, s+ `), where
` = 1h for hourly products and s is the start of an ar-

bitrary full hour. Furthermore, let the tuple T s,` de-

note the trades in the product (s, `). Within the tuple

T s,`, the trades are ordered according to their execu-

tion time, i.e., from oldest to most recent. For any trade

k ∈ T s,`, V s,`
k and P s,`

k denote the volume and price

of the respective trade k. The unit of the volume V s,`
k

is MWh, while that of the prices P s,`
k is €/MWh. Let

Ss,` ⊆ T s,` be an arbitrary subset of trades of a partic-

ular product (s, `).

Based on the notation introduced above, one can de-

fine volume-weighted price averages of trades in an ar-

bitrary tuple of trades Ss,` as follows [3]:

m(Ss,`) :=
1∑

k∈Ss,` V
s,`
k

∑
k∈Ss,`

V s,`
k P s,`

k . (1)

We can formulate well-known price indices with the

above notation for any product (s, `) [24]:

ID1 = m(T s,` ∩ [s− 1h, s− 30min)), and

ID3 = m(T s,` ∩ [s− 3h, s− 30min)), (2)
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where tradeswithin the last 30min of trading are not in-

cluded in the averages. As motivated in the background

section (see section 2), we proceed similarly, studying

the last three hours before delivery and ignoring the

tradeswithin the last 30min before delivery. Within the

remaining trading window, we repeat our computations

every minute. We obtain the set of all forecasting times

Us,`
γ := {s− 3h, s− 3h+ 1min,

s− 3h+ 2min, ..., s− 30min− γ}, (3)

where γ is the length of the forecasting horizon. Longer

forecasting horizons lead to smaller sets of forecast-

ing times Us,`
γ to exclude the trades executed within

the last 30min before delivery from the forecasting

horizon. More concretely, assuming a forecasting hori-

zon of γ = 15min for a product (s, `) starting at

s, we make the earliest forecast at s − 3h and the

last forecast at s − 45min. The earliest correspond-

ing forecast would cover the interval [s − 3h, s −
2h45min) and the latest forecast would cover [s −
45min, s − 30min), where the end of the last inter-

val coincides with the end of the considered trading pe-

riod. In our paper, we chose the forecasting horizons

γ ∈ {1min, 5min, 10min, 15min, 30min, 60min}.
We chose the horizons 15min, 30min, and 60min con-

sidering the study by [5]. We added shorter horizons to

obtain results for the short-term price development.

4.2 Data Normalization

We use transaction prices of public trades from EPEX

for the German CID market for 2021 and 2022, during

which thewholesale electricitymarketwas very volatile,

which manifests itself in large price movements beyond

historical price ranges [9]. The price volatility under-

lines the necessity for normalization. We propose an

expanding window approach for normalization to make

contracts statistically comparable. The general idea be-

hind our normalization approach is that all trades for a

specific product belong to a distribution unknown un-

til trading stops. During the trading of the product,

only past trades are available. Therefore, we estimate

the unknown distribution’s mean and standard devia-

tion based on all known trades. As time passes and

new trades come in, we get a new distribution based

on which we update the respective estimates to include

the latest trades.

In more technical terms, we adopt the Z-score nor-

malization. For an arbitrary product (s, `) and at any

forecasting time u ∈ Us,`
γ , we compute the volume-

weighted mean µs,`
u and standard deviation σs,`

u of

prices of all trades completed in the past, i.e., of all

trades in T s,` ∩ (u−∞, u). The set T s,` contains all

trades in product (s, `). Using the estimated mean and

standard deviation, we can normalize a value x as fol-

lows:

y :=
x− µs,`

u

σs,`
u

, (4)

where y is the normalized value. We apply the same

normalization to the baselines and their respective re-

gression target.
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Fig. 2 One-minute price averages before and after

normalization, and 30-day moving average.

Figure 2 contains the one-minute price trajectories

before and after normalization. Additionally, the plot

contains a 30-day moving average to visualize the price

trends. Applying the normalization removes the visible

trend in the price data and centers the data around zero.

Consequently, with our normalization, we can compare

the forecasting errors of our baselines in the time do-

main.

4.3 Targets

Regression targets are the values we aim to forecast

with our baselines. We define the regression targets

based on the price averaging introduced in Equation 1.

For an arbitrary product (s, `) and a given forecasting

horizon γ, we obtain the regression targets Rs,`
u,γ by

computing

Rs,`
u,γ := m

(
T s,` ∩ [u, u+ γ)

)
for all u ∈ Us,`

γ . (5)

In other words, we compute the volume-weighted price

average of the trades in T s,` ∩ [u, u + γ). The inter-

val [u, u+ γ) covers the forecasting interval of length γ
starting at forecasting time u.

4.4 Baselines

We consider baselines as simple, i.e., easy to under-

stand and to compute, market-independent forecasting

models that one can use to benchmark more compli-

cated models. We consider different regression base-

lines to approximate future price averages, i.e., regres-

sion targetsRs,`
u,γ . The general idea for the computation

of the baselines is that the most recent trades contain
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the most accurate market information. Computation-

wise, the baselines select and average different num-

bers of themost recent trades. The following subsection

introduces the tested baselines in more detail.

4.4.1 Baseline Definition

In general, we take a two-step approach to defining

regression baselines:

1. We fix a base time interval in the past, which ends

at the current forecasting time u ∈ Us,`
γ . We ex-

plore different base interval lengths ω, which ex-

tend to the past. The past interval length ω should

not be confused with the forecasting horizon γ,
which spans into the future. For a given base in-

terval length ω at forecasting time u ∈ Us,`
γ , we

obtain the base interval Bu,ω := [u− ω, u).

2. We average a subset of trades completed within

the base interval, i.e., trades within Ss,`
u,ω := T s,`∩

Bu,ω. The base interval limits the age of the trades,

i.e., trades within the interval can be no older than

ω. The actual baselines differ in how they choose

trades to average within the base interval.

We present three baselines with increasing complex-

ity, starting with the simplest one, which averages all

trades of a product within a base interval Bu,ω

mω(Ss,`
u,ω) := m(Ss,`

u,ω). (6)

Our formulation is a generalization of the baselines used

by Scholz et al. [5]. The time interval limits the trades

used for the baseline calculation according to age, which

ensures that the baseline only averages recent trades.

A second approach is to average the n most recent

trades in the base interval Bu,ω, which allows the base-

line to adapt to changing market liquidity. Assuming a

fixed number of trades n, the age of the oldest trade is

higher when liquidity is low and lower when liquidity is

high. In other words, the frequency of trades is higher

when liquidity is high. Assuming a tuple of trades sorted

by the time of execution Ss,`
u,ω = (k1, k2, ..., k|Ss,`

u,ω |
), we

get the baseline

lω,n(Ss,`
u,ω) := m

(
(k|Ss,`

u,ω |−n+1
, ..., k|Ss,`

u,ω |
)
)

(7)

for 1 ≤ n ∈ N. When n > |Ss,`
u,ω|, i.e., the num-

ber of trades is lower than n, we ignore n and apply

the averaging procedure to all trades in Ss,`
u,ω. Narajew-

ski and Ziel [3] use one particular case of the baseline,

where n = 1. In contrast, our baseline definition is

more general, allowing for different parameterizations.

The baselines mω(Ss,`
u,ω) and lω,n(Ss,`

u,ω) are undefined

in case |Ss,`
u,ω| = 0, i.e., the set of considered trades is

empty. Therefore, we fill the respective entries by for-

ward filling from the closest valid baseline value in a pre-

vious interval from the same product.

The third approach extends the second baseline

lω,n(·). Instead of deciding on a fixed number of trades

to consider, we choose the number of trades as a share

of the total number of trades in a specific time interval

ω, i.e., np :=
⌈
p · |Ss,`

u,ω|
⌉
for p ∈ (0, 1]:

hω,p(Ss,`
u,ω) := lω,np(Ss,`

u,ω). (8)

Thus, the baselinehω,p combines the age limit for trades

and the adaptability to market liquidity since the base-

line covers a fixed interval and takes a share of trades.

To our knowledge, such a baseline has not yet been used

for CID price forecasting.

4.4.2 Baseline Parameterization

The generic definition of baselines excludes concrete

parametrizations. Nevertheless, a concrete set of pa-

rameters is necessary to compute and compare our

baselines.

Table 2 contains the parameter sets we use for the

different baselines. In the first step, we choose the pa-

rameters considering existing literature. Scholz et al. [5]

usem1min andm15min, which average the trades in the

last 1min and 15min respectively. The study by Nara-

jewski and Ziel [3] uses l∞,1, the price of the last trade,

as a benchmark. In the second step, we expand the

parametrizations experimentally to improve individual

baseline performance and to cover larger parts of the

parameter space. We use five parametrizations formω,

ten for lω,n, and forty for hω,p. Existing literature cov-

ers only three of those concrete baseline parametriza-

tions: m1min, m15min, and l∞,1. Note that for hω,p(·),
we do not consider a base interval of 1min since such

intervals contain too few trades to extract single-digit

percentages of trades.

4.4.3 Baseline Comparison

Given our baseline definition, which requires base-

lines to be independent of the market, we formulate

two criteria for baseline comparison thatmust apply be-

yond forecasting accuracy:

1. Baselines should be independent of long-term

wholesale market prices, i.e., prices in adjacent

months and years so that benchmarks are com-

parable for contracts with very different delivery

times.

2. Baselines should be independent of short-term

market prices, i.e., price movements in a single

contract during adjacent minutes and hours so

that benchmarks are comparable over different

distances to delivery.

We independently assess these properties for every

forecasting horizon γ. First, we divide the data by the

month of the product considered and by the distance to

6



Table 2 Parametrization of Baselines.

Baseline Base interval length Other parameter

mω(·) ω ∈ {1min, 5min, 10min, 15min, 30min} -

lω,n(·) ω ∈ {∞} n ∈ {1, 2, ..., 10}
hω,p(·) ω ∈ {5min, 10min, 15min, 30min} p ∈ {1%, 2%, ..., 10%}

delivery and obtain a dataset for every pair of month

and distance to delivery. Second, we compute well-

known error measures on these datasets, such as the

RMSE and themean absolute error (MAE). Note that we

do not use the mean absolute percentage error (MAPE)

since our data can contain entries with the value zero.

The regression errors are comparable in scale due to

previously applied normalization. Third, we average the

computed RMSE and MAE along different dimensions:

1. We average over all months and distances to deliv-

ery, which yields a single average error for every

baseline. The average errors reflect the two de-

sired properties for every baseline since errors at

different times and distances to delivery get equal

weighting.

2. We average over all months, which yields an aver-

age error for every distance to delivery. The aver-

ages enable an analysis of baseline errors through-

out the trading window.

3. We average over all distances to delivery, which

yields an average error for every month in the

dataset. The averages allow an analysis of baseline

performance throughout the different months.

We use the different error averages to compare the

baselines and assess the desired properties’ fulfillment.

5. RESULTS AND DISCUSSION

We discuss our empirical results in the following sec-

tion. We start by comparing all the baselines and dis-

cussing our error scores based on the error measures

widely used in ML and AI, namely the RMSE and the

MAE. As a result of the comparison, we select the

best baseline to perform the remaining analysis. More

specifically, we analyze the baseline accuracy over two

years and at different distances to delivery.

5.1 Baseline Comparison

In the first step, we compare the baselines and their

overall performance. We assess whether the last price

l∞,1 is the most accurate baseline. Figure 3 depicts the

relative change in error over the l∞,1 baseline. Note

that although we computed the results for all param-

eters presented in Table 2, we only show the results for

a selection of baselines due to space restrictions. The

selection includes the best baselines and the baselines

used in literature. Negative values point to a decrease,

and positive numbers to an increase in error over the

l∞,1 baseline. Hence, all entries for l∞,1 are zero.

We highlight the three best baselines for every horizon

length γ, i.e., those with the lowest average error. For

the RMSE, at every horizon length γ, the baseline l∞,4,

which averages the prices of the last four trades, per-

forms best at all horizon lengths γ. For the MAE, the

best baselines differ for the different horizon lengths γ.
The baseline h5min,2%, which averages the last 2% of

trades in the preceding 5min interval, performs best for

γ = 1min. For γ ∈ {5min, 10min, 15min, 30min},
the baseline l∞,3% beats all the other baselines. For

the longest forecasting horizon, i.e., for γ = 60min,
the baseline l∞,2 yields the lowest error. For both er-

ror metrics and all horizon lengths, the last price base-

line l∞,1 is never among the best-performing baselines.

Further, the performance difference between the best

and worse performing baselines decreases significantly

for longer forecasting horizon lengths.

The reduction in error difference between the base-

lines when increasing the forecasting horizon means

that baseline choice is critical for short-term forecasts.

At the same time, the baseline choice matters less for

long-term forecasts due to more similar performance

between the baselines. The identified baselines yield

lower RMSEs andMAEs than the baselines found in liter-

ature, i.e., m1min, m15min [5], and l∞,1 [3]. Moreover,

only relying on the price of the last transaction is insuf-

ficient to capture the most recent price information op-

timally since the best baselines all consider more than a

single price. Choosing a single baseline depends on the

error metric and the forecasting horizon. For regression

problems in ML and AI, it is common to minimize the

RMSE. We, therefore, select the l∞,4 baseline, which

averages the prices of the last four completed trades,

because its RMSE is the lowest for all forecasting hori-

zons γ. We limit the subsequent results and analysis to

the baseline l∞,4.

5.2 Distance to Delivery Analysis

We analyze the baseline behavior over different dis-

tances to delivery next. Figure 4 presents the de-

velopment of the forecasting error of the baseline

l∞,4 throughout the considered trading window, which

spans from 3h until 30min before delivery. The plot

contains averages over 2021 and2022 for every distance

7
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Fig. 3 RMSE (upper) and MAE (lower) changes in % over last price baseline l∞,1.

to delivery. Due to price data normalization, the abso-

lute error values have no unit and are not directly in-

terpretable. Note that for a forecasting horizon γ, we
compute the last forecasting error at γ+30min before

delivery. Consequently, depending on the forecasting

horizon γ, the plot’s error series stop at different dis-

tances to delivery. Over the complete interval, the er-

rors for longer forecasting horizons are higher. The er-

rors increase around full hours for all forecasting hori-

zons γ. The rise is especially high for the RMSEs at short

forecasting horizons, particularly at 60min before deliv-

ery. Apart from the heightened errors around full hours,

the error is stable between 180min and 60min before

delivery. After that, errors settle at a higher level.

The increase in errors for longer forecasting horizons

reflects the higher forecasting uncertainty in the distant

future. The rise of errors around full hours hints at in-

creased short-term dispersion of errors, resulting from

the market area change one hour before delivery. For

the other hours, the explanation is more complicated.

One possible explanation could be that some market

participants try to close positions, disregarding current

market prices. In contrast, the overall error levels align

with the market structure outside the full hours. Un-

til 60min before delivery, the low error level coincides

with the larger market area. After that, the number

of market participants shrinks as only domestic partic-

ipants in the German-Luxembourgish bidding zone [15]

are allowed tradewith eachother, reducing liquidity and
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Fig. 4 Averages of RMSEs and MAEs at different

distances to delivery.

increasing volatility, making price forecasting more dif-

ficult.

5.3 Monthly Analysis

Next, we evaluate the error levels throughout 2021

and 2022 to assess baseline performance in the volatile

market environment. Figure 5 depicts the error devel-

opment in monthly frequency. The errors are averages

over all distances to delivery. Again, the errors increase

for higher forecasting horizons γ. Besides small fluctu-
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ations, the errors are stable throughout the two years.

During both years, the errors decrease slightly towards

the end of the year and increase again at the start of the

new year. Nonetheless, the errors are not correlated to

market prices and market volatility.
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Fig. 5 Monthly averages of RMSEs and MAEs during

2021 and 2022.

Considering monthly errors is especially important in

the context of market volatility. We observe that the er-

rors are almost stable throughout the timeframe, con-

firming that our data normalization approach works. In

other words, the different products are comparable in

scale and volatility over time following normalization. It

is, therefore, possible to use price data from the volatile

market environment of 2021 and 2022 for model build-

ing. The seasonal fluctuations where lower errors oc-

cur in the winter could result from lower variable pho-

tovoltaic (PV) generation, leading to lower forecasting

errors and, therefore, less market uncertainty.

5.4 Findings Summary

In summary, we can extract four important findings

from our result analysis and discussion. First, baselines

benefit from including the prices of several transactions

in their calculations. Second, among the forecasting

horizon we consider, which range from 1min to 60min,
the baseline forecasting errors increase for longer fore-

casting horizons, reflecting the higher uncertainty fur-

ther into the future. Third, the market design has an

impact on market volatility. Our analysis across differ-

ent distances to delivery suggests that markets become

less predictable when the trading area is reduced to the

German-Luxembourgish bidding zone, leading to fewer

market participants and hence lower market liquidity.

Fourth, we have empirically demonstrated that the er-

rors stay steady throughout the two-year interval in our

dataset, which means that our normalization success-

fully makes prices comparable throughout the volatile

market environment.

6. CONCLUSION AND OUTLOOK

In our paper, we study the topic of CID price forecast-

ing. In the first part, we consider different baselines,

which use different rules to select and average themost

recent transaction prices. We find that the average of

the last four transactions is a good baseline for price

forecasts of different horizons from 1min to 60min. Be-
side higher errors around full hours, the baseline per-

formswell throughout the CID.Wepropose a normaliza-

tion approach to handle changing market volatility and

price levels. The steady errors of the baseline through-

out 2021 and 2022 confirm that the normalization per-

forms as intended. However, the limited time period ex-

amined remains a limitation of our study. It is impera-

tive to continuously validate the findings with updated

market data.

Different topics are relevant for future study of the

CID market. For instance, one area for investigation

is the market behavior around full hours. Further, the

lower errors in December 2021 and 2022 deserve more

attention. Regarding CID EPF, future regression model

development can rely on the baselines compared in this

paper for benchmarking. Further, multi-step EPF mod-

els are crucial in trading, as traders can derive a mar-

ket direction from such forecasts. Model development

should consider features reflecting fundamental mar-

ket properties, such as VRE production forecasts, prices

of neighboring products, and imbalance measures. Be-

yond features, differentML algorithms and NN architec-

tures deserve further investigation.

AKNOWLEDGEMENT

This research was funded in part by the Luxembourg

National Research Fund (FNR) and PayPal, PEARL grant

reference 13342933/Gilbert Fridgen. For the purpose

of open access, the author has applied a Creative Com-

mons Attribution 4.0 International (CC BY 4.0) license to

any Author Accepted Manuscript version arising from

this submission.

Supported by Enovos.

REFERENCES
[1] Koch C and Hirth L. Short-term electricity trading

for system balancing: An empirical analysis of the role

of intraday trading in balancing Germany’s electricity

system. en. Renewable and Sustainable Energy Reviews

2019 Oct; 113:109275. DOI: 10.1016/j.rser.2019.
109275
[2] Directorate-General for Energy (European Commis-

sion) and Frontier Economics. METIS technical note T4:

overview of European electricity markets. eng. LU: Pub-

lications Office of the European Union, 2019

9



[3] Narajewski M and Ziel F. Econometric modelling and

forecasting of intraday electricity prices. en. Journal of

Commodity Markets 2020 Sep; 19:100107. DOI: 10 .
1016/j.jcomm.2019.100107
[4] Marcjasz G, Uniejewski B, and Weron R. Beating the

Naive–Combining LASSO with Naive Intraday Electric-

ity Price Forecasts. en. Energies 2020 Jan; 13. Num-

ber: 7 Publisher: Multidisciplinary Digital Publishing In-

stitute:1667. DOI: 10.3390/en13071667
[5] Scholz C, Lehna M, Brauns K, and Baier A. Towards

the Prediction of Electricity Prices at the Intraday Mar-

ket Using Shallow and Deep-Learning Methods. en.

Mining Data for Financial Applications. Ed. by Bitetta V,

Bordino I, FerrettiA, Gullo F, Ponti G, and Severini L. Lec-

ture Notes in Computer Science. Cham: Springer Inter-

national Publishing, 2021 :101–18. DOI: 10.1007/978-
3-030-66981-2\_9
[6] NarajewskiM and Ziel F. Ensemble forecasting for in-

traday electricity prices: Simulating trajectories. en. Ap-

plied Energy 2020 Dec; 279:115801. DOI: 10.1016/j.
apenergy.2020.115801
[7] Serafin T,Marcjasz G, andWeron R. Trading on short-

term path forecasts of intraday electricity prices. en. En-

ergy Economics 2022 Aug; 112:106125. DOI: 10.1016/
j.eneco.2022.106125
[8] Fama EF. Efficient Capital Markets: A Review of

Theory and Empirical Work. The Journal of Finance

1970; 25. Publisher: [American Finance Association,Wi-

ley]:383–417. DOI: 10.2307/2325486
[9] ACER. ACER’s Final Assessment of the EU Wholesale

Electricity Market Design. 2022 Apr

[10] Jędrzejewski A, Lago J, Marcjasz G, and Weron

R. Electricity Price Forecasting: The Dawn of Machine

Learning. IEEE Power and Energy Magazine 2022 May;

20. Conference Name: IEEE Power and Energy Maga-

zine:24–31. DOI: 10.1109/MPE.2022.3150809
[11] Uniejewski B,Weron R, and Ziel F. Variance Stabiliz-

ing Transformations for Electricity Spot Price Forecast-

ing. IEEE Transactions on Power Systems 2018 Mar;

33. Conference Name: IEEE Transactions on Power Sys-

tems:2219–29. DOI: 10.1109/TPWRS.2017.2734563
[12] Baule R and Naumann M. Volatility and Dispersion

of Hourly Electricity Contracts on the German Continu-

ous Intraday Market. en. Energies 2021 Jan; 14. Num-

ber: 22 Publisher:Multidisciplinary Digital Publishing In-

stitute:7531. DOI: 10.3390/en14227531
[13] EPEX SPOT. EPEX SPOT Market Data. 2023

[14] European Commission. Commission Regulation

(EU) 2015/1222 of 24 July 2015 establishing a guideline

on capacity allocation and congestionmanagement. en.

Legislative Body: OP_DATPRO. 2021 Mar

[15] NEMO Committee. Single Intraday Coupling (XBID)

Information Package. 2021

[16] Ehrenmann A, Henneaux P, Küpper G, Bruce J, Klas-

manB, and Schumacher L. The future electricity intraday

market design. en. 2019 Feb

[17] Weron R. Electricity price forecasting: A review of

the state-of-the-art with a look into the future. en. In-

ternational Journal of Forecasting 2014 Oct; 30:1030–

81. DOI: 10.1016/j.ijforecast.2014.08.008
[18] Nowotarski J and Weron R. Recent advances in

electricity price forecasting: A review of probabilistic

forecasting. en. Renewable and Sustainable Energy Re-

views 2018 Jan; 81:1548–68. DOI: 10.1016/j.rser.
2017.05.234
[19] Hong T, Pinson P, Fan S, Zareipour H, Troccoli A, and

HyndmanRJ. Probabilistic energy forecasting:Global En-

ergy Forecasting Competition 2014 and beyond. en. In-

ternational Journal of Forecasting 2016 Jul; 32:896–

913. DOI: 10.1016/j.ijforecast.2016.02.001
[20] Shinde P and Amelin M. A Literature Re-

view of Intraday Electricity Markets and Prices.

2019 IEEE Milan PowerTech. 2019 Jun :1–6. DOI:

10.1109/PTC.2019.8810752
[21] Kiesel R and Paraschiv F. Econometric analysis of

15-minute intraday electricity prices. en. Energy Eco-

nomics 2017 May; 64:77–90. DOI: 10.1016/j.eneco.
2017.03.002
[22] KremerM, Kiesel R, and Paraschiv F. A Fundamental

Model for Continuous Intraday Electricity Trading. eng.

Philosophical Transactions of the Royal Society A: Math-

ematical, Physical and Engineering Sciences 2020. Ac-

cepted: 2021-03-18T08:40:51Z Publisher: The Royal So-

ciety. DOI: 10.2139/ssrn.3489214
[23] Kremer M, Kiesel R, and Paraschiv F. Intraday Elec-

tricity Pricing of Night Contracts. en. Energies 2020 Jan;

13. Number: 17 Publisher: Multidisciplinary Digital Pub-

lishing Institute:4501. DOI: 10.3390/en13174501
[24] EPEX. Description of EPEX SPOT market indices.

2023 Feb

[25] Kath C and Ziel F. The value of forecasts: Quantify-

ing the economic gains of accurate quarter-hourly elec-

tricity price forecasts. en. Energy Economics 2018 Oct;

76:411–23. DOI: 10.1016/j.eneco.2018.10.005
[26] Uniejewski B, Marcjasz G, and Weron R. Under-

standing intraday electricity markets: Variable selec-

tion and very short-term price forecasting using LASSO.

en. International Journal of Forecasting 2019 Oct;

35:1533–47. DOI: 10 . 1016 / j . ijforecast . 2019 .
02.001

10


