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ABSTRACT 
 As an increasing number of areas are turning to 
renewable energy sources to meet the growing energy 
demand of buildings, the intermittent generation times 
of renewable energies present a significant challenge. 
These sources often fail to provide sufficient energy 
during peak consumption periods. Vehicle-to-Building 
systems (V2B), serving as flexible energy storage 
solutions within buildings, have the capability to 
overcome these intermittency issues. This work focuses 
on applying deep reinforcement learning (DRL) to control 
the complex building energy management system. Our 
algorithm leverages historical photovoltaic data, building 
energy consumption profiles, and the State of Charge 
(SOC) along with the entry and exit times of electric 
vehicles. It strategically sets the charging and discharging 
power of each EV in real-time to optimize energy usage 
and manage the unpredictability of renewable energy. 
We integrated the reinforcement learning framework 
with a city-level energy simulation platform and 
conducted on various urban forms in Shenzhen, China as 
case studies. A series of experiments were carried out, 
demonstrating the effectiveness and practicality of our 
approach compared with Model Predictive Control 
(MPC) methods in peak shaving and load leveling. 
 
Keywords: deep reinforcement learning, peak shaving, 
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NONMENCLATURE 
Abbreviations  

EV 
V2B 
SOC 
DRL 
MDP 
MPC 

Electric vehicle 
Vehicle-to-Building systems 
State of Charge 
deep reinforcement learning 
Markov Decision Process 
Model Predictive Control 
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PV 
PPO 
QP 

Photovoltaic power generation 
Proximal Policy Optimization 
Quadratic Programming 

Symbols  
 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡  
 𝐵𝐵𝑒𝑒𝑒𝑒,𝑖𝑖 
 𝑃𝑃𝑒𝑒𝑒𝑒,𝑖𝑖
𝑚𝑚𝑙𝑙𝑚𝑚 

 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  
 𝑄𝑄𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡  
 𝑃𝑃𝑐𝑐𝑙𝑙𝑐𝑐 
 𝑃𝑃𝐺𝐺𝐺𝐺𝑖𝑖𝑙𝑙𝑡𝑡  
 𝜂𝜂𝐸𝐸𝑃𝑃,𝑖𝑖 

Power consumption of the building 
Battery capacity of ev 
Maximum charging power 
Battery condition 
PV power genenration 
The charging rate of ev 
Total capacity of charging piles 
Power got from grid at time t 
the efficiency of charging operations 

1. INTRODUCTION 
The growing demand for electricity during peak 

consumption periods in buildings presents substantial 
challenges to the stability and efficiency of power grids. 
This surge in demand not only places a considerable 
strain on the existing infrastructure but also hampers the 
effective integration of renewable energy sources, which 
often face inconsistency in power generation throughout 
the day. To tackle these challenges, it is imperative to 
incorporate flexible energy storage solutions into the 
building's energy management system. Advanced 
battery technologies and the utilization of electric 
vehicles serve as key components in such solutions. They 
have the potential to alleviate the impact of peak loads 
by storing surplus energy during periods of low demand 
and subsequently releasing it during times of high 
demand, thereby enhancing the overall efficiency and 
sustainability of the power grid. This integration of 
innovative energy storage solutions is a critical step 
towards achieving a more resilient and environmentally 
friendly energy system. 

Intelligent control methods for energy storage 
devices, such as electric vehicles, have seen significant 

Energy Proceedings
Vol 47, 2024

ISSN 2004-2965



2 

advancements over the years. Initially, rule-based 
approaches[1] were employed, which relied on simple 
and effective single decision variables for control. These 
were followed by the advent of control algorithms like 
Model Predictive Control (MPC) [2][3], which uses rolling 
optimization techniques to reformulate control 
problems into optimization challenges. In contemporary 
times, machine learning techniques[4], particularly 
reinforcement learning[5], are being harnessed to 
develop sophisticated control strategies. However, many 
of these methods are primarily focused on reducing 
electricity costs for consumers and decreasing grid 
dependency[6], thereby contributing indirectly to peak 
demand reduction without explicitly targeting peak 
values. 

This paper presents a novel peak shaving algorithm 
based on reinforcement learning, which has been tested 
on a city-level simulator to ascertain its effectiveness and 
reliability. The experimental findings show the potential 
of our approach in effectively optimizing peak loads. 

The paper is organized as follows: in the next section 
we describe the online optimization challenge and the 
reinforcement learning approach of dynamically 
adjusting the charging and discharging power of electric 
vehicles to optimize energy consumption profiles in 
buildings. In the section 3, we describe our experiments 
of urban forms in Shenzhen and analyze the results 
compared with the MPC method.  In the section 4, we 
conclude the paper. In the last section, we propose some 
new problems to be solved in the future. 

2. METHODOLOGY  

2.1 Problem description 

Real-time adjustment of electric vehicle (EV) 
charging and discharging power to optimize the building 
energy consumption profile is an online optimization 
problem. It requires consideration of multiple factors 
within the building, including building resilience and 
photovoltaic (PV) power generation. The optimization 
goal is to significantly reduce the maximum energy 
consumption of the building during peak times. 
However, there is a lower limit to the total amount of 
energy consumption, and reducing peak loads may 
create new peak areas elsewhere. 

We optimize the current problem through modeling. 
The electric vehicle's battery charge is determined based 
on the remaining charge from the previous moment, the 
current charging or discharging power, and the battery 
capacity. 

𝑆𝑆𝑆𝑆𝐶𝐶𝑛𝑛(𝑖𝑖 + 1) = 𝑆𝑆𝑆𝑆𝐶𝐶𝑛𝑛(𝑖𝑖) + η𝐸𝐸𝑃𝑃,𝑖𝑖
𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛
𝑖𝑖 ∗ ∆𝑡𝑡
𝐵𝐵𝑒𝑒𝑒𝑒,𝑖𝑖

(1) 

𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛
𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛

𝑡𝑡 ≤ 𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛
𝑚𝑚𝑙𝑙𝑚𝑚 (2) 

𝑆𝑆𝑆𝑆𝐶𝐶𝑛𝑛𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑛𝑛(𝑖𝑖) ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑛𝑛𝑚𝑚𝑙𝑙𝑚𝑚 (3) 

The variable 𝜂𝜂𝐸𝐸𝑃𝑃,𝑖𝑖  represents the efficiency of 
charging and discharging operations. Additionally, the 
power output of each charging station and the battery 
capacity of each electric vehicle are capped at their 
respective maximum values. 

�𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛
𝑡𝑡

𝑁𝑁𝑡𝑡

𝑛𝑛=1

≤ 𝑃𝑃𝑐𝑐𝑙𝑙𝑐𝑐,∀𝑡𝑡 = 1,2,⋯ ,𝑇𝑇 (4) 

The term 𝑁𝑁𝑡𝑡  represents the number of charging 
stations within a building area, which corresponds to the 
maximum number of electric vehicles that can engage in 
Vehicle-to-Building[7] operations. In the model, at each 
moment 𝑡𝑡, the total power for charging and discharging 
must not exceed a predefined limit (𝑃𝑃𝑐𝑐𝑙𝑙𝑐𝑐). This constraint 
is designed to prevent the simultaneous high-power 
charging and discharging from causing a surge that could 
impact the electrical grid adversely 

2.2 Reinforcement learning approach 

In this study, we use deep reinforcement learning to 
address the challenge of peak shaving in smart building 
energy management[8] by regulating the charging and 
discharging power of electric vehicles connected within 
a Vehicle-to-Building system. The core of our approach 
involves formulating the energy management problem 
as a Markov Decision Process (MDP) problem, where 
decisions about charging and discharging EV batteries 
are made at discrete intervals, each spanning ten 
minutes. This time interval is selected to balance the 
complexity of decision-making with the practical 
responsiveness needed in dynamic building energy 
management. 

State Space: The state space captures both the 
dynamic characteristics of the electric vehicles and the 
energy status of the building, enabling the model to 
make decisions that optimize energy usage and peak 
load management. It includes the state of charge (𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖), 
maximum charging and discharging power (𝑃𝑃𝑒𝑒𝑒𝑒,𝑖𝑖

𝑚𝑚𝑙𝑙𝑚𝑚), and 
battery capacity for each electric vehicle (𝐵𝐵𝑒𝑒𝑒𝑒,𝑖𝑖) at time t. 
In addition to the electric vehicles, the state space also 
contains some basic information, including the building's 
energy consumption(𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 ), the current time(𝑡𝑡), and the 
photovoltaic power generation(𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ) at the current time. 

𝑆𝑆 = [𝑒𝑒𝑣𝑣0, 𝑒𝑒𝑣𝑣1, … , 𝑒𝑒𝑣𝑣𝑛𝑛, 𝑡𝑡,𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ,𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 ] (5) 

𝑒𝑒𝑣𝑣𝑖𝑖 = �𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖 ,𝐵𝐵𝑒𝑒𝑒𝑒,𝑖𝑖 ,𝑃𝑃𝑒𝑒𝑒𝑒,𝑖𝑖
𝑚𝑚𝑙𝑙𝑚𝑚�, 𝑖𝑖 ∈ [1,𝑛𝑛] (6) 
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Action Space: The action space consists of a 
continuous vector representing the charging and 
discharging rates of electric vehicles at each moment, 
with values ranging from -1 to 1. This approach of not 
directly selecting the power output but rather using a 
normalized action space facilitates faster and more 
stable convergence during training. 

𝐴𝐴𝑡𝑡 = �𝑄𝑄𝑒𝑒𝑒𝑒,0
𝑡𝑡 ,𝑄𝑄𝑒𝑒𝑒𝑒,1

𝑡𝑡 , … ,𝑄𝑄𝑒𝑒𝑒𝑒,𝑛𝑛
𝑡𝑡 � (7) 

𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖(𝑡𝑡 − 1) +
𝑄𝑄𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡 ∗ 𝑃𝑃𝑒𝑒𝑒𝑒,𝑖𝑖

𝑚𝑚𝑙𝑙𝑚𝑚

𝐵𝐵𝑒𝑒𝑒𝑒,𝑖𝑖
(8) 

In this model, 𝑄𝑄𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡  represents the rate of charging 

or discharging, where negative values indicate 
discharging and positive values indicate charging. The 
next state of each electric vehicle is determined based on 
this rate 𝑄𝑄𝑒𝑒𝑒𝑒,𝑖𝑖

𝑡𝑡 and the quantities defined in the state 
space. 

Reward Function: We have creatively designed the 
reward function, as the ultimate goal is to reduce peak 
energy consumption. Considering the maximum value 
over a period in the reward function is challenging, so we 
employ a retrospective method. We retain historical data 
of building energy consumption for the past K moments 
and calculate the average energy consumption over this 
K-period. The penalty term in the reward function is the 
squared difference between the current moment's 
energy consumption and this average value. This design 
encourages the reinforcement learning training to 
smooth the energy consumption curve toward the 
historical average, effectively reducing peaks. 

𝑃𝑃𝐺𝐺𝐺𝐺𝑖𝑖𝑙𝑙𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −�𝑃𝑃𝑒𝑒𝑒𝑒,𝑖𝑖
𝑡𝑡

𝑛𝑛

𝑖𝑖=0

� (9) 

𝑟𝑟𝑡𝑡 = −�
∑ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡
𝑖𝑖=𝑡𝑡−𝑘𝑘

𝑘𝑘
− 𝑃𝑃𝐺𝐺𝐺𝐺𝑖𝑖𝑙𝑙𝑡𝑡 �

2

(10) 

The Algorithm 1 shows the process of running a PPO 
reinforcement learning method. 

Algorithm 1. PPO-Based Approach 
Input:  𝑒𝑒𝑣𝑣𝑖𝑖 ,  𝑡𝑡,𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ,𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡  
Output:  𝐴𝐴𝑡𝑡 = �𝑄𝑄𝑒𝑒𝑒𝑒,0

𝑡𝑡 ,𝑄𝑄𝑒𝑒𝑒𝑒,1
𝑡𝑡 , … ,𝑄𝑄𝑒𝑒𝑒𝑒,𝑛𝑛

𝑡𝑡 � 
Initialization: Initial action, parameters θ  and a 
storage buffer for trajectory memory 
1 for each step of an episode do 
2 Get initial observation state 𝑠𝑠𝑡𝑡  
3 for t = 1……T do 
4 Select action 𝑚𝑚𝑡𝑡 from actor network 
5 Get the reward 𝑟𝑟𝑡𝑡 according to (10) 
6 Observe the next state 𝑠𝑠𝑡𝑡+1 
7 Store {𝑠𝑠𝑡𝑡 ,𝑚𝑚𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1} into replay buffer 
8 Sample from the replay buffer 
9 Compute the value of advantage function 
10  Update the network parameters 
11  𝑠𝑠 = 𝑠𝑠𝑡𝑡+1 
12   end for 
13 end for 

3. RESULTS AND DISCUSSION 

3.1 Experimental setup 

We conducted a case study in Shenzhen to validate 
the effectiveness of our algorithm. The entire 
experiment was based on the CityEnergyFlow Navigator, 
a city-level energy simulator. This system includes 
480,000 electric vehicles moving in real-time within 
Shenzhen. At each time step, the state of each EV is 
updated according to a mobility model, and the building 

 
Fig. 1 Load shifting in one day in Minzhi Subdistrict of Longhua District,Shenzhen 
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energy consumption state is updated based on a 
predictive model.  

We interacted with the system using the Proximal 
Policy Optimization (PPO)[9] reinforcement learning 
algorithm, which allows real-time acquisition of state 
information at each time step. The parameter settings 
for training the network are shown in Table 1. This data 
is then processed and learned through a neural network 
to calculate the value of the reward function at each 
moment. The action vectors selected by the action 
network are returned to the simulator to precisely 
control the charging and discharging operations of the 
EVs within the buildings managed by the Navigator. The 
simulator then continues running, awaiting the return 
and results of the next time step. Through multiple 
rounds of training in interaction with the system, we 
fine-tuned and obtained the final parameters of the PPO 
model. 

Tabel 1 PARAMETERS OF PPO TRAINING 

Parameters Value Parameters Value 

learning rate 1e-3 clip epsilon 0.2 

gamma 0.99 batch size 64 

gae lambda 0.95 lambda entropy 0.01 

In the platform, Shenzhen is divided into different 
physical urban forms. We treat each urban form as an 
agent for control purposes. Our primary training period 
is selected from a week in the summer, as the peak loads 
during this season pose the greatest threat to the 
electrical grid throughout the year. We imply distributed 
reinforcement learning training to each urban form 
agent. On average, each agent has thousands of electric 
vehicle entries per week, which provides enough flexible 
resources to control. 

3.2 Performance evaluation 

We initially conducted experiments in a physical 
region in the Minzhi Subdistrict of Longhua District 
where we trained and ran the PPO reinforcement 
learning network. The results, as shown in Figure 1, 
demonstrate that the new energy consumption curve for 
buildings, represented in yellow, greatly reduces peak 
values compared to the original curve. By utilizing 
electric vehicles for scheduling, the load during peak 
periods in the afternoon and evening was shifted to the 

off-peak periods at night and early morning.  

Figure 3 displays the power graphs for PV, EV, and 
building systems after optimization by our algorithm. To 
validate the effectiveness of our algorithm, we compared 
it with a baseline method, the Model Predictive Control 
Method[10]. MPC is a classical control algorithm that 
generally achieves good results under typical conditions. 

Based on the optimization model described in 
section 2.1, we use the Model Predictive Control to 
obtain a receding horizon, transforming the control 
problem into an online Quadratic Programming (QP) 
optimization issue. The approach involves looking ahead 
several time slices at each time slice, aiming for the 
current algorithm to be locally optimal within this period. 
Only the outcome of the first time slice got from each 
calculation is applied, and this process is recursively 
rolled forward. 

Our baseline MPC model is described as follows: 

 𝑚𝑚𝑖𝑖𝑛𝑛 𝑆𝑆𝑡𝑡𝑇𝑇 ∗ 𝑄𝑄 ∗ 𝑆𝑆𝑡𝑡 + ��𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡−1,𝑛𝑛�
𝑇𝑇

𝑁𝑁𝑡𝑡

𝑛𝑛=1

∗ 𝑅𝑅 ∗ �𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡−1,𝑛𝑛�(11) 

𝑆𝑆𝑡𝑡 ,𝑈𝑈𝑡𝑡,𝑛𝑛 ∈ 𝑅𝑅𝑇𝑇×𝟙𝟙,𝑄𝑄,𝑅𝑅 ∈ 𝑅𝑅𝑇𝑇×𝑇𝑇 (12) 

𝑆𝑆𝑡𝑡 = �ξ0,𝑡𝑡 , ξ1,𝑡𝑡 , ξ2,𝑡𝑡 ,⋯ , ξ𝑇𝑇−1,𝑡𝑡�
𝑇𝑇 (13) 

ξ𝑖𝑖,𝑡𝑡 = �𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡+𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡+𝑖𝑖 −�𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛
𝑡𝑡

𝑁𝑁𝑡𝑡

𝑛𝑛=1

� ∗ ∆𝑡𝑡 (14) 
 

Fig. 2 Load shifting in one week 

 
Fig. 3 Grid, PV and EV Power of the building 
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In this baseline model, the second term represents 
the control loss of the MPC, which is the damage caused 
by frequent switching between charging and discharging 
to the batteries or charging stations.  

𝑄𝑄,𝑅𝑅  are two coefficient matrices, and represents 
the importance you attached to each part in the model. 
We use Gurobi to solve the current model, obtaining the 
control vector for each moment under several 
constraints of the optimization model. 

We selected twenty physical areas as the subjects of 
our study, training Reinforcement Learning networks 
and running Model Predictive Control algorithms for 
each. The same time period was chosen for all areas, 
setting the total training timesteps at 100,000, with each 
region operating online for the duration of one week to 
collect data. The tests were conducted in a multi-
threaded environment to evaluate the algorithms. After 
the experiments, we averaged the improvement ratios 
obtained for each area. Both algorithms showed 
improvements over the original unregulated charging 
and discharging states, with the RL algorithm achieving 
better results in reducing peak loads and overall 
electricity demand from the grid compared to the MPC 
algorithm. This superior performance of the RL algorithm 
shown in Figure 4 can be attributed to the limited 
foresight of the MPC algorithm. It has more probability 
to get trapped in local optima.  

4. CONCLUSIONS 
This paper introduces a deep reinforcement 

learning-based algorithm designed to optimize energy 
usage during peak demand times in urban forms. By 
integrating electric vehicles as flexible energy storage 

within building energy management systems, the study 
focuses on reducing peak energy loads to enhance grid 
stability, cut costs and improve PV self-consumption 
rate. 

The algorithm was tested on the CityEnergyFlow 
Navigator platform which simulates the city-level 
mobility model. It effectively shifted energy 
consumption from peak to off-peak hours, easing the 
load on the power grid and improving the use of 
renewable energy. The deep reinforcement learning 
model's adaptability to real-time system changes allows 
for better decision-making in dynamic energy 
environments. 

Compared to traditional Model Predictive Control 
methods, this approach offers a more flexible and 
efficient solution for complex energy management. The 
research emphasizes the benefits of combining 
advanced machine learning with energy management 
systems to tackle urban energy challenges. 

We plan to conduct larger-scale experiments and 
analyses on the simulation platform of Shenzhen to gain 
a deeper understanding of energy regulation. Currently, 
each individual building area is treated as an isolated 
agent, overlooking the interactions between different 
agents in practice. In the future, we intend to employ 
algorithms such as multi-agent reinforcement 
learning[11] to enable cooperative control among 
building areas. This collaborative approach aims to 
achieve energy conservation and emission reduction 
goals collectively, working together to reduce the peak 
load across the entire region. 
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