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ABSTRACT 
Urban traffic emissions from vehicle fuel pose 

significant challenges to urban sustainability. Revealing 
urban traffic emission patterns is crucial for effective 
urban planning. Current research often overlooks the 
spatial interaction links facilitated by traffic flows. This 
oversight limits our ability to map the attribution of 
emissions from vehicular travels between different 
locations. To this end, our study introduces a novel 
perspective and corresponding methodologies to reveal 
emission patterns of urban traffic. Utilizing extensive, all-
day activity data from individual vehicles across multiple 
types, this research quantifies CO2 and NOX emissions 
from vehicular travels within the urban center of the case 
city. This quantification of emissions defines the link 
weights in the construction of the Urban Traffic Flows 
Emission Network (UTFEN). Applying complex network 
theory, this study uncovers emission patterns within 
UTFEN, ranging from the micro to the macro level. Our 
findings demonstrate that private car emissions exhibit a 
bimodal fluctuation throughout the day, whereas truck 
emissions peak at noon. Micro-level network analysis 
shows that nodes linked to high-emission links are 
predominantly situated at the city's ingress and egress 
points, with these high-emission links displaying a certain 
degree of directional consistency. At the macro level, 
statistical measures expose significant structural 
differences in networks composed of different vehicle 
types. Additionally, statistical analysis indicates that the 
link emission distribution within UTFEN follows a power 
law distribution, revealing the heterogeneity of 
emissions of spatial interaction traffic flows. This study 
offers a network perspective on urban traffic emission 
patterns, offering data-driven insights critical for 
formulating sustainable urban traffic strategies. 
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NONMENCLATURE 

Abbreviations  
OD Origin-Destination 
UTFEN Urban traffic flows emission network 
ALPR Automatic license plate recognition 
IVE International vehicle emission model 
CBD Central business districts 

1. INTRODUCTION 
Urban traffic system serves as a vital link between 

urban spaces. However, the resultant emissions present 
a threat to climate security and public health [1]. 
Revealing urban traffic emission patterns is crucial to 
urban sustainability. 
 Existing studies often rely on partitioning urban areas 
into discrete analysis units, such as 1 × 1 km grid cells [2] 
or road segments [3], to reveal the emission patterns. In 
this approach, when a vehicle completes a travel from 
the origin to the destination (OD), the emissions 
produced during the travel are split and classified into 
the various analysis units it passes through. This method 
compromises the integrity of travel and overlooks the 
spatial interactions between origin and destination 
points. Such oversight limits the ability of this research to 
address specific traffic management challenges. For 
instance, it presents difficulties in mapping vehicular 
emission flows between different locations, and it is 
challenging to identify which locations contribute to high 
emission events by generating (or attracting) significant 
volume of travels. Therefore, studying the emissions of 
urban point-to-point interaction traffic flows is crucial, 
which can provide key information for urban planners to 
formulate targeted traffic emission reduction strategies. 
However, travel volumes and emissions on the spatial 
interaction links present a dynamic and interconnected 
pattern, which has additional complexity. It is challenging 
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to effectively extract descriptive and macroscopic 
information from such a complex system [4] . 

To overcome these limitations, this study proposes a 
novel perspective to reveal urban traffic emission 
patterns: treating urban traffic flow and its emissions as 
a directed weighted network, namely the Urban Traffic 
Flows Emission Network (UTFEN). Within UTFEN, the 
weight of each link reflects the emissions or travel 
volume between OD pairs. This study explores the 
microscopic pattern of UTFEN based on the basic 
elements of the network (nodes and links) and their 
attributes (weighted degree and weight). Microscopic 
pattern quantitatively analyzes the ability to generate 
traffic emissions of different locations, and the emission 
intensity of spatial interaction traffic flows between 
different locations. Additionally, the study examines the 
macroscopic statistical measures of UTFEN, unveiling the 
network's global topological features and the emission 
distribution law across links. 

Furthermore, accurate quantification of urban traffic 
emissions is a necessary prerequisite for revealing 
emission patterns. Diverging from traditional sampling-
based approaches, this study employs an automatic 
license plate recognition system (ALPR) to collect 
comprehensive activity data from individual vehicles. 
This data is then integrated with the International 
Vehicle Emission (IVE) model, thereby enhancing the 
quantification of traffic emissions across various vehicle 
types. Such a method provides a richer and more 
accurate data foundation for UTFEN Establishment [5]. 

2. DATA AND METHODOLOGY 

2.1 Research Area and Data 

In this study, the core urban area of Xuancheng city 
was selected as a research case, depicted in Fig. 1. As one 
of the 27 central cities in the Yangtze River Delta, 
Xuancheng represents a typical example of China’s 
rapidly developing small and medium-sized cities. Light 
passenger cars account for over 85% of total vehicular 
mileage, with trucks comprising approximately 10%. This 
fleet composition mirrors that of similar cities, thus 
providing a representative basis for analysis [6]. Densely 
distributed across the study area, ALPR detectors 
capture comprehensive vehicle activity data, thus 
facilitating precise emission quantification. ALPR 
detectors are strategically placed at each intersection 
within the urban road network. Each time a vehicle 
passes through an ALPR detector, a node record will be 
generated. Table 1 presents an example of the node 
record of ALPR data. The ALPR system collected 

approximately 1 million records on May 30, 2018, 
providing a substantial dataset for this analysis.  

 

Fig. 1 Core urban area of Xuancheng 

 

Table 1. Examples of ALPR data. 

Index 
Detector 

Location ID 
License Plate Number 

(Anonymized) 
Detection Time 

1 HK-84 964352155 2018/05/30/07:00:05 

 

2.2 Travel data extraction and emission quantification  

This study employs data from ALPR systems to 
extract travel data. The urban road network can be 
conceptualized as a graph, consisting of nodes 
(intersections) and road links (road segments). Each 
ALPR detector’s location is treated as a network node. A 
vehicle's movement between two adjacent detectors is 
defined as a trip. Given the dense deployment of ALPR 
system, with an average monitoring section length is 
approximately 600 meters, it is reasonable to assume 
that the origin and destination of vehicle trips are 
proximate to these nodes. Consecutive trips by a single 
vehicle form a complete travel, with the origin node(O) 
defined as the start of the first trip and the destination 
node (D) as the end of the last trip. 

Emission quantification for urban traffic utilizes the 
International Vehicle Emission (IVE) model, which 
calculates the emissions of gases such as CO2, NOX, HC, 
and NH3 during vehicle operation. The emissions for a 
single trip are calculated as follows: 

𝐸𝑣,𝑢 = ∑ 𝐸𝑣,𝑢,𝑘𝑘    (1) 

𝐸𝑣,𝑢,𝑘 = 𝑙𝑛 𝐿𝑣,𝑢,𝑘 × 𝑄𝑣,𝑢,𝑘   (2) 

Where 𝐸𝑣,𝑢 represents the emissions from travel 𝑢 
by vehicle 𝑣. 𝐸𝑣,𝑢,𝑘 represents the emissions from trip 
𝑘 within the travel 𝑢. 𝐿𝑣,𝑢,𝑘  indicates the distance in 
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trip 𝑘 . 𝑄𝑣,𝑢,𝑘  denotes the corresponding emission 
factor determined by the IVE model. The emission factor 
𝑄 is expressed by: 

𝑄 = 𝐵 × ∏ 𝐾𝑤   (3) 

Where 𝐵 is the baseline emission factor, and 𝐾𝑤 
is the correction factor indexed by 𝑤. These factors are 
determined based on the methodology proposed by Yu 
et al. [5]. Consequently, the emission quantification for 
traffic flows between OD links is described as: 

𝐸𝑖𝑗 = ∑ ∑ 𝐸𝑣,𝑢𝑢∈𝑆𝑖𝑗𝑣     (4) 

Where 𝐸𝑖𝑗  is the total emissions for the OD link 

from node  𝑖  to node 𝑗 , summed over all travels from 
node  𝑖  to  𝑗 . Meanwhile, 𝑆𝑖𝑗 represents the set of all 

travels originating at and terminating at node 𝑗 . 

2.3 Network Construction and Measures 

In this study, urban traffic flows and emissions are 
conceptualized as a weighted directed network, termed 
the UTFEN. This approach aims to delineate emission 
patterns across various levels of urban traffic. Within 
UTFEN, nodes correspond to specific geographic 
locations acting as origins and destinations, and directed 
links between these nodes represent the traffic flows 
between OD pairs. The weight 𝑤𝑖𝑗 on a link from node 

𝑖  to 𝑗  indicates either the emissions ( 𝐸𝑖𝑗 ) or travel 

volume. 
At the micro level, this study examines emission 

patterns by analyzing the weights of links and weighted 
out-degrees of nodes, as outlined in Table 2. When 

considering travel volume as the weight, 𝑑𝑖
𝑜𝑢𝑡 and 𝑑𝑖

𝑖𝑛 
denote the frequency of travels originating from and 
terminating at node 𝑖 , respectively. Incorporating 
ecological principles, Liu et al. [7] applied the "source-
sink" concept to travel volumes to uncover dynamic 
traffic patterns. Adopting this framework, emissions are 
used as weights to compute the weighted degree of 

nodes, where 𝑑𝑖
𝑜𝑢𝑡 represents the total emissions from 

travels starting at node 𝑖 , and 𝑑𝑖
𝑖𝑛  encompasses the 

emissions for travels ending at the node. This method 
not only highlights the emissions linked with traffic 
attraction or generation by nodes but also facilitates an 
assessment of the environmental impact and 
management significance of each node within the urban 
transport network. 

At the macro level, the study employs various 
statistical measures to describe the global attributes of 
UTFEN. These measures offer insights into the network's 
structural and operational properties, and furnish 
benchmarks for comparative analysis of different 
networks. As detailed in Table 1, the network density 𝛿 
can reflect the connectivity of UTFEN. The average 
clustering coefficient 𝐶 reflects the tightness of the 
network structure connection, and the average shortest 
path 𝐿  reflects the accessibility between nodes. 
Furthermore, statistical analysis of link weight 
distributions plays a crucial role for revealing the 
underlying patterns and regularities in emission 
distribution across the UTFEN. 

 
Table 2 Measure of network 

Measure Symbol or equation General implication 

Weighted-in-degree 𝑑𝑖
𝑖𝑛 = ∑ 𝑤𝑗𝑖

 

𝑗

 The sum of the weights of the links pointing to node 𝑖. 

Weighted-out-degree 𝑑𝑖
𝑜𝑢𝑡 = ∑ 𝑤𝑖𝑗

 

𝑗

 The sum of the weights of the links from node 𝑖 to other nodes. 

Weighted degree 𝑑𝑖
𝑡𝑜𝑡 = 𝑑𝑖

𝑖𝑛 + 𝑑𝑖
𝑜𝑢𝑡 The sum of the weights of the links connected to node 𝑖.  

Interaction strength 𝑑𝑖
↔ = ∑ 𝑤𝑖𝑗

 

𝑗

𝑤𝑗𝑖 The sum of the weights of the links between node 𝑖 and node 𝑗. 

Network density 𝛿 =
𝑚

𝑛2
 

The interconnectivity density among nodes within a network, 𝑚  represents the total 
number of links, and 𝑛 denotes the total number of nodes in the network. 

Clustering coefficient 𝐶𝑖 =
[𝑊[1/3] + (𝑊𝑇)[1/3]]

𝑖𝑖

3

2[𝑑𝑖
𝑡𝑜𝑡(𝑑𝑖

𝑡𝑜𝑡 − 1) − 2𝑑𝑖
↔]

 
The degree of cohesiveness among a node's neighbors. 𝑊  is the weight matrix, [𝑊]𝑖𝑖 
represents the value at the diagonal position corresponding to node 𝑖. 

Average clustering 
coefficient 

𝐶 =
1

n
∑ 𝐶𝑖

 

𝑖

 The mean value of 𝐶𝑖 of all nodes in the network[8]. 

Average shortest path 𝐿 =
1

n(n − 1)
∑ 𝑑𝑖𝑗

 

𝑖≠𝑗

 The mean number of edges among the shortest paths between all pairs of nodes, reflecting 
the network's accessibility and compactness. 𝑑𝑖𝑗 is the shortest path between 𝑖 and 𝑗。 

3. MAPPING EMISSIONS OF UTFEN  
This study has effectively quantified traffic 

emissions within the study area through the 
methodologies outlined. We focus on CO2 and NOX 

emissions, due to their roles as a prevalent greenhouse 
gas and potential health risks, respectively. ALPR system 
collects activity data across all vehicle types. This analysis 
considers two main mobility, car, reflecting human 
mobility, and truck, reflecting freight movement. As 
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shown in Fig. 2, private cars and trucks exhibit distinct 
diurnal emission fluctuation for CO₂ and NOX. Private cars 
emit 85,803 kg of CO2 and 33 kg of NOX in a single day, 
with notable bimodal peaks in emissions during the 
typical urban commuting peaks in the morning and 
evening. In contrast, the peak daily emissions for trucks 
occur at noon, trucks emit 5,932 kg of CO₂ and 27 kg of 
NOX in one day. Between 1AM and 5AM emissions from 
both types of vehicles were low, reflecting the reduction 
in nighttime traffic activity.  

 

 
(a)Car (b)Truck 

Fig. 2 Emissions of car and truck 
 

Mapping emissions of the UTFEN visually 
delineates the micro-level emission patterns. In the 
UTFEN, Ncar and Ntruck represent network of private cars 

and trucks, respectively. Fig. 3 illustrates the 
spatiotemporal distribution of travel source emissions 

( 𝑑𝑖
𝑜𝑢𝑡 ) and OD link emissions ( 𝑤𝑖𝑗 ). Emissions are 

categorized into five levels using the natural breakpoint 
method, chosen for its ability to optimally separate data 
into distinct classes, with darker colors representing 
higher emissions. From the node perspective, there is no 
clear spatial pattern in the Ncar emission hotspots, as 
depicted in Fig. 3(a-h). The most intense emission event 
occurs at node A, which serves as the entry point of the 
study area when discussing out-degrees, generating 
1,006 kg of CO2 and 0.4 kg of NOx between 17-18 hours. 
In contrast, as shown in Fig. 3(i-p), the emission hotspots 
for trucks are concentrated at the entry points of the 
study area, with the highest emissions also recorded at 
node A, where 123 kg of CO2 and 0.4 kg of NOX were 
emitted between 12-13 hours. This indicates that travels 
entering the study area from outside significantly 
contribute to urban traffic emissions. Unlike major cities 
such as Shanghai [9], significant travel originate from the 
city boundaries rather than central business districts 
(CBD), reflecting differences in urban development levels 
and city planning.

 

 
Fig. 3 Travel source emissions levels and link emissions levels of UTFEN 
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Moreover, traffic emissions on spatial interaction 
links exhibit pronounced spatiotemporal heterogeneity. 
Overall, compared to north-south links, high-emission 
flows predominantly move in an east-west direction. For 
Ncar, it is evident that high-emission links often have one 
end at the study boundary. Although links within the 
inter-city in Ncar are not ranked high in emissions, they 
are very dense. In contrast, Ntruck has fewer links, with 
high-emission links typically found between boundary 
nodes. Possibly related to trucks' transit function, the 
origin and destination of the trucks’ travels are typically 
outside the study area, with the area merely serving as a 
pass-through city. This phenomenon indicates that the 
environmental impact of through-traveling trucks is 
more significant compared to the local freight demand 
within the study area. 

4. STATISTICAL ANALYSIS OF UTFEN  
In this section, we thoroughly investigate the 

macroscopic network parameters of UTFEN through 
statistical Measure. The detailed results of Ncar and Ntruck 
are shown in Table 3. Notably, the number of nodes 𝑛 
for both Ncar and Ntruck are comparable. However, the 
number of links 𝑚 for Ncar is nearly double that of Ntruck. 
This discrepancy leads to significant differences in 
network density, echoing the visual data in Section 3, 
confirms that private vehicle travel has high randomness 
and diversity in cities, while the travel OD of trucks is 
relatively fixed. The average shortest path length 𝐿 for 
both networks is less than 2, suggesting high node 
reachability within UTFEN, typically with no more than 
two travels required to connect any two nodes. When 
analyzing the average clustering coefficient, with traffic 
volume as the weight, the Ncar network exhibits tighter 
structural connections than Ntruck. These network macro 
topological indicators demonstrate the non-randomness 
and centralization of UTFEN. 

Further, to elucidate the distribution law of UTFEN, 
we examine the complementary cumulative distribution 
functions (CCDF) of link emissions for Ncar and Ntruck. The 
CCDF of many real networks' link weights often exhibit a 
heavy tail, such as power law distribution: 𝑝(𝑥) ∝ 𝑥−𝛼. 
A heavy-tailed distribution means that there is a 
probability of observing very large values in the tail of the 
distribution. This study employs exponential and power 
law distributions as hypothetical models. Utilizing the 
log-likelihood ratio test [10], the power law provides a 
better fit for the CCDFs of Ncar and Ntruck than the 
exponential, with p-values < 0.1, aligning with the traits 
of heavy-tailed distributions. Employing the standard 
power-law fitting technique [11], we determine the 

optimal power-law fit for the link emissions' CCDFs of 
both Ncar and Ntruck. 

As illustrated in Figure 4, the CCDFs of all link 
emissions demonstrate significant power-law traits in 
their tails. Despite most links exhibiting low emissions, a 
small number of links display exceptionally high 
emissions. For CO2 emissions, the blue line predominates 
in the upper right, suggesting that private cars are more 
likely to generate higher emissions at the same OD pairs. 
For NOX, trucks will most likely be the main contributor 
to NOX emissions. For both CO2 and NOX, there is a 
phenomenon that the green line decreases slower than 
the blue line. This shows that the probability of high-
emission events from trucks in interactive traffic flow in 
urban space is higher, and the heterogeneity of Ntruck link 
emission distribution is more powerful. 
 

Table 3 Statistical measures of Ncar and Ntruck 

Type 𝑛 𝑚 𝛿 𝐿 𝐶 
Ncar 75 2470 0.44 1.46 0.78 

Ntruck 60 1046 0.29 1.7 0.51 

 

 

 
Fig. 4 The complementary cumulative distribution 

function P(X ≥ x) and maximum likelihood power-law fit 
with parameters (xmin, α) of Ncar and 𝑁𝑡𝑟𝑢𝑐𝑘 

 

CO2  mission

C
C
 
  

 
 
X
  
 x
 

NOX  mission

C
C
 
  

 
 

X
  
 x
 



6 

5. DISCUSSION AND CONCLUSIONS 
This paper adopts a new perspective of complex 

networks to deeply reveal the internal structure of 
Xuancheng's traffic emission patterns. In contrast to 
traditional discrete analysis units, this approach 
emphasizes the spatial interactions that transcend 
conventional geographic limitations. By employing the 
network's weighted out-degree, we effectively pinpoint 
the locations of high-emission sources within the urban 
matrix. Targeted emission reduction strategies at these 
critical nodes, such as promoting targeted electric 
vehicle promotion or establishing low-emission zones, 
could mitigate emissions at their origin. Network link 
emissions reveal the high-emission OD in the city. The 
emissions corresponding to this type of OD can be 
reduced by optimizing urban configuration or improving 
public transportation substitution. In addition, the macro 
analysis of the urban emission network in this paper 
reveals the law of the distribution of spatial interaction 
vehicle flow emissions in Xuancheng, and the calculation 
results of network measure also provide new empirical 
data for network theory. Due to space constraints, we 
only discuss the out-degree, and it is necessary to 
continue the study of in-degree. Looking forward, the 
meso-level characteristics of the UTFEN model are also 
worth further exploration. At the same time, the impact 
of land use or POI on UTFEN can be further discussed. 
While this model is demonstrated within Xuancheng, its 
applicability extends to other urban contexts, offering a 
scalable tool for guiding sustainable urban development. 
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