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ABSTRACT 
 Along with the rapid evolution of intelligent trans-
portation systems (ITS) and network technology, vehicles 
have access to richer traffic data, paving the way for 
more efficient driving controls now. A novel hierarchical 
eco-driving strategy which is tailored specifically for 
hybrid electric truck navigating complex multi-
intersection scenarios is proposed. Initially, a simulation 
scene is designed to simulate realistic truck-following 
scenarios. Subsequently, an upper-layer truck-following 
strategy is devised utilizing the safe off-line deep 
deterministic policy gradient(SDDPG) algorithm. This 
strategy is fully use of insights from leading vehicles and 
traffic signal data. Specifically, logical judgement module 
considering safety constraints are integrated into 
training processing to minimize collision risks. In 
addition, safe reward function is set to direct the agent 
to learn the safer action. Moving to the lower layer, an 
energy management strategy is proposed using deep 
reinforcement learning (DRL) techniques. A unique 
reward shaping function is introduced to guide the 
learning process effectively. Ultimately, the proposed 
methodology demonstrates a remarkable fuel-saving 
rate of 97.46% compared to dynamic programming (DP) 
approach by simulation. 
 
Keywords: hybrid electric truck, truck-following, SDDPG, 
energy management strategy 

1. INTRODUCTION 
The pursuit of carbon peak and carbon neutrality is 

pivotal national strategies, which result in significant 
pressure on the transportation sector. It is crucial to 
accelerate transportation to achieve carbon peak 
because it is benefit for fostering high-quality 
development and facilitating green transformation. 
Hybrid power systems offer essential solutions to 
address energy management challenges, particularly in 
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flexibly distributing energy within multiple power 
sources to meet the demand of power. Consequently, 
the research on energy management strategy (EMS) 
remains to be pivotal in automotive development. 
Furthermore, energy-saving control for hybrid electric 
vehicles (HEVs) now extends beyond EMS benefit from 
rapid advancements in intelligent connected tech-
nologies. Now Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) are widely utilized to enhance 
efficiency[1]. 

Eco-driving utilizes the information extracted from 
the surroundings to reduce vehicle fuel consumption and 
emissions through reasonable vehicle speed control and 
power distribution methods while ensuring safety, so as 
to achieve the purpose of energy conservation and 
emission reduction. Eco-driving has become one of the 
popular research directions now. Some studies have 
taken the driving terrain information into consideration 
to design energy management strategies. The results 
show that it can improve the energy saving effect by 
considering the surrounding environment information 
[2-3]. Some scholars integrate traffic information into 
driving strategies to design a collaborative optimization 
strategy. The results demonstrate that the approach 
achieves over 90% accuracy based on the dynamic 
programming (DP) method, while ensuring the vehicle 
tracking performance[4]. In addition, the ecological 
driving problem can also be constructed as a multi-agent 
hierarchical optimization problem, and a large number of 
scholars have conducted research on this[5-7].  

Although previous studies have been carried out, 
many studies only consider the energy-saving effect 
ignoring safety separately or design complex learning 
processing[8-9]. In fact, many studies have proven that 
security constraints have a great impact on agent 

learning[10-11]. Because of the above phenomenon，a 
new SDDPG algorithm is proposed including a security 
mechanism. Compared with the previous TTC learning 
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algorithm, this method directly allows the agent to learn 
the appropriate acceleration, so that it can respond more 
directly to the velocity change under safe conditions. In 
addition, the design of the reward function should not be 
static because of the different demand at each time. 
Therefore, in order to explain the learning situation of 
the agent better, a new reward function form is 
proposed. 

The rest of this paper is organized as follows. 
Detailed powertrain model of hybrid light truck and 
traffic flow model are illustrated in Section 2. Then, the 
hierarchical control structure is proposed in Section 3. 
Section 4 presents the experiment results. The relevant 
discussions is illustrate in Section5. Finally, conclusions 
and further research directions are outlined in Section 6. 

2. SYSTEM MODEL DESCRIPTION 

2.1 Truck-following model 

As the above Fig. 1 shows, the two truck in the truck-
following scene should meet the following equation: 

 {
𝑣𝑒𝑔𝑜 = 𝑎𝑒𝑔𝑜𝑡

𝑥𝑒𝑔𝑜 = 𝑣𝑒𝑔𝑜𝑡 +
1

2
𝑎𝑒𝑔𝑜𝑡2  (1) 

where 𝑎𝑒𝑔𝑜, 𝑣𝑒𝑔𝑜 are the acceleration and the velocity 

of the ego car. And the 𝑥𝑒𝑔𝑜 is the travel distance. As 

shown in the figure above, 𝐿𝑚𝑎𝑥  and 𝐿𝑚𝑖𝑛  represent 
the maximum distance and the minimum distance 
between the two vehicles respectively. 

2.2 Powertrain model 

 

Fig. 2 Powertrain model 
The research object of this paper is a coaxial hybrid 

electric truck equipped with an intelligent connected 

system. The hybrid system is shown in Fig. 2. The main 
components include engine, clutch, battery pack, two 
motor / generator, gearbox, wheel and so on. The main 
parameters are shown in Table 1.  

Table 1 
Vehicle parameters of truck 

Parameters Value 

Weight 5000kg 

Frontal area    3.8𝑚/𝑠2   

Air resistance coefficient 0.6 

Tire radius 0.38m 

Rolling resistance coefficient 0.012 

Max power of EM motor 92kW 

Max power of ISG motor 130kW 

Max power of engine 65kW 

The research simplifies the calculation process for 
the driving force demand of the truck by ignoring the 
performance of internal mechanical components and 
thermal energy. According to the longitudinal dynamics 
of the vehicle, the driving force be expressed as the 
following equation: 

𝐹𝑡 =  𝑚𝑔𝑓𝑐𝑜𝑠𝜃 + 𝑚𝑔𝑠𝑖𝑛𝜃 +
1

2
𝐶𝑑𝜌𝐴𝑣2 + 𝛿𝑚

𝑑𝑣

𝑑𝑡
  (2) 

where 𝐹𝑡  is the driving force demand, 𝑚 is the mass, 𝑔 
is the gravity acceleration, 𝑓 is the rolling resistance 
coefficient, 𝜌 is the air density, 𝜃is the angle of slope, 
𝐶𝑑  is the drag coefficient, 𝐴 is the front area, 𝑣 is the 
velocity, 𝛿is the correction coefficient of rotating mass. 
The state of charge(SOC) is defined as the equation: 

 𝑆�̇�𝐶 =
𝑈𝑜𝑐−√𝑈𝑜𝑐

2−4𝑃𝑅

2𝑄𝑅
  (3) 

where 𝑈𝑜𝑐  is the voltage of battery, 𝑃 is the power, 
𝑅 denotes the resistance, 𝑄means the battery capacity. 

3. HIERARCHICAL ECO-DRIVING FRAMEORK 
The hierarchical framework of eco-driving consists of 

two parts, namely the upper-layer truck-following 
strategy passing through multi-intersection and the 
lower-layer energy management strategy. The overall 
framework is shown as Fig.3. 

3.1 Truck-following strategy 

In the upper layer, truck-following strategy is 
equipped with safe off-line deep deterministic policy 
gradient(SDDPG) agent including safe constrain in 

 
Fig. 1 Truck-following scene 
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learning processing. The state variables are shown in 
Table 2. 

Table 2 
The list of variables state  

Vehicle state Sensor state  Traffic light state 

𝑣𝑒𝑔𝑜 

𝑎𝑒𝑔𝑜 

 
 
 

 

𝑣𝑝𝑟𝑒 

𝑎𝑝𝑟𝑒 

𝑑𝑝𝑟𝑒 

 
 
 

𝑏𝑇𝐿 

TLd  

𝑡𝑇𝐿,𝑔𝑏𝑒𝑔𝑖𝑛 

𝑡𝑇𝐿,𝑔𝑒𝑛𝑑 

𝑣𝑇𝐿,𝑚𝑎𝑥 

𝑣𝑇𝐿,𝑚𝑖𝑛 

 
where 𝑣𝑒𝑔𝑜  and 𝑎𝑒𝑔𝑜  are velocity and acceleration; 

𝑣𝑝𝑟𝑒  , 𝑎𝑝𝑟𝑒 and𝑑𝑝𝑟𝑒 are the state of preceding vehicle; 

𝑏𝑇𝐿reflects the phase of traffic lights; 𝑑𝑇𝐿is the distance 
between the ego car and the target traffic light; 
𝑡𝑇𝐿,𝑔𝑏𝑒𝑔𝑖𝑛  and 𝑡𝑇𝐿,𝑔𝑒𝑛𝑑 reflect the beginning time and 

ending time of target traffic light; 𝑣𝑇𝐿,𝑚𝑎𝑥and 𝑣𝑇𝐿,𝑚𝑖𝑛 

are the maximum and minimum velocity which can drive 
through traffic intersections safely.  

As we know, many trained agents often learn actions 
that beyond the safe boundary, so in this section a logical 
judgement module with intelligent driver model(IDM) is 
designed as shown in Fig. 4.  

 

Fig. 4 The logical judgement module with IDM 

Except for that, reward function related to safety 
rules is designed to direct the agent to learn safe 
acceleration. The reward function is set as : 

𝑟 = 𝑤𝑓𝑢𝑒𝑙𝑟𝑓𝑢𝑒𝑙 + 𝑤𝑡𝑟𝑟𝑡𝑟 + 𝑤𝑗𝑒𝑟𝑟𝑗𝑒𝑟 + 𝑤𝑠𝑎𝑓𝑒𝑟𝑠𝑎𝑓𝑒   (4) 

where 𝑤𝑓𝑢𝑒𝑙 , 𝑤𝑡𝑟  , 𝑤𝑗𝑒𝑟  , 𝑤𝑠𝑎𝑓𝑒  are the weights of 

different parameters. 𝑟𝑓𝑢𝑒𝑙 , 𝑟𝑡𝑟  , 𝑟𝑗𝑒𝑟  are reward 

functions that consider fuel consumption, traffic 
information and comfort. , 𝑟𝑠𝑎𝑓𝑒  represents safe 

direction on agent respectively. 

 

Fig. 3 The overall hierarchical eco-driving framework 
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3.2 Energy management strategy 

The state space is defined as five dimensions space 
including the demand power 𝑃𝑑𝑒𝑚, the state of battery 
𝑆𝑂𝐶𝑛𝑜𝑤  , the velocity of the host truck 𝑣𝑒𝑔𝑜, the current 

position 𝑠𝑒𝑔𝑜 and the state of the clutch. 

In order to learn a less fuel consumption strategy, 
this paper introduces a leverage function into the 
framework of the reward function. At the same time, a 
modified SOC reward is designed considering the 
demand relationship between SOC and fuel is flexible. 
For example, the truck should priorly use fuel in the 
beginning. With the constant driving, we want to restore 
the SOC to the initial value, so that the battery energy 
can be fully utilized. The modified reward function is set 
as: 

 𝑟 = 𝑤𝑓𝑟𝑓 + 𝑤𝑐𝑙𝑢𝑟𝑐𝑙𝑢 + 𝑤𝑠𝑜𝑐𝑟𝑠𝑜𝑐(𝛽, 𝑖) + 𝑤𝑙𝑒𝑣𝑟𝑙𝑒𝑣   (5) 

where 𝑤𝑓 , 𝑤𝑐𝑙𝑢 , 𝑤𝑠𝑜𝑐 , 𝑤𝑙𝑒𝑣  are the weights of 

different parameters. 𝑟𝑓 , 𝑟𝑐𝑙𝑢 , 𝑟𝑠𝑜𝑐 , 𝑟𝑙𝑒𝑣  are reward 

functions that consider fuel consumption, stop-start of 
clutch, SOC and action choice.𝛽is the factor between SOC 

maintain and change, and i represents the step of current 
episode.  

4. SIMULATION RESULTS 
A multi-intersection road with traffic lights is 

established as Fig.5 . In order to validate the effect of the 
reinforcement learning, the Krauss algorithm and the 
base energy management algorithm which is lack of 𝑟𝑙𝑒𝑣 

and 𝑟𝑠𝑜𝑐 is fixed have been compared. 

 
  Fig. 5 The simulation scene 

The training process of upper is shown in Fig. 6. The 
truck-following distance of the two cars is shown in Fig. 
7. The acceleration and velocity compared with Krauss 
are shown in Fig.8. The truck-following effects obtained 
by the algorithms are shown in the Fig. 9.  

 
 Fig. 6The training process of truck-following 

 
   Fig.7 The Distance between two trucks 

 
    Fig. 8 Results comparison with Krauss 

 
Fig. 9 The trip trajectory curves of two trucks 
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In addition, the training process of lower layer is 
expressed in the Fig. 10. The SOC curves of different 
strategy are shown in Fig.11. 

     
      Fig. 10 The training process of lower layer 

     
       Fig. 11 The SOC curves of different strategies 

 

The final fuel consumption of different methods is 
list in Table 3. 

Table 3 
The variables of state  

Strategy SOC 
final  

Equivalent fuel 
consumption (g) 

Percentage 

DP 
Contrast strategy I 

DDPG modified 

0.612 
0.548 
0.581 

572.62 
601.08 
587.76 

-- 
95.03% 
97.46% 

5. DISCUSSION 
It can be seen from the Fig. 6 that the upper RL  

agent has learned a satisfactory strategy. Fig. 7 shows 
that the following distance between the two trucks is 
always greater than 0. It means that there will be no 
collision, which means that the strategy learned by the 
agent is very safe. It can be seen from the Fig. 8 that the 
RL strategy has more lower changes on acceleration 
compared with the Krauss, which means better comfort. 
Fig. 9 means that there is good truck-following strategy 
when driving through the intersection traffic lights. It can 

be seen from the Fig. 10 that the lower strategy agent 
has learned a satisfactory strategy. The battery SOC 
change curve is shown in the Fig. 11. It can be seen that 
the SOC terminal value of the proposed strategy is better 
than the baseline strategy, and the fuel efficiency can 
reach 97.46% of DP, which shows that the proposed 
strategy has good fuel economy. 

6. CONCLUSIONS 
This paper presents a hierarchical ecological driving 

strategy for hybrid electric trucks using SDDPG. Initially, 
a reinforcement learning agent is developed by the 
SDDPG algorithm to learn truck-following strategy at 
multi-intersection scene. At the same time, safety 
constraints and safe logic framework are introduced to 
enhance driving safety. Besides, it is helpful to ensure 
comfortable speed trajectories and appropriate 
following distances. Subsequently, agents equipped with 
energy management strategies are trained to optimize 
power allocation. A novel reward function design 
method is proposed to balance battery loss and fuel 
consumption effectively. Simulation results demonstrate 
that the hierarchical driving strategy demonstrates 
improved comfort compared with Krauss under the 
premise of safety. At the same time, , there is a 
significant improvement in SOC final value, which is 
better for the recycling of battery. Compared to the DP 
method, the proposed approach achieves 97.46% of the 
fuel consumption. Future work will focus on developing 
more complex scenarios and improving the universality 
of algorithm. 

ACKNOWLEDGEMENT 
This research is supported by National Natural 

Science Foundation of China (52302482), S&T Program of 
Hebei (236Z2202G), Hebei Natural Science Foundation 
(E2021203079), Science and Technology Foundation of 
Hebei Education Department (QN2022176), and 
Scientific Research Foundation of Hebei Province for the 
Returned Overseas Chinese Scholars (C20210323). 

REFERENCE 
[1] Shi, J., Xu, B., Zhou, X., & Hou, J. A cloud-based energy 
management strategy for hybrid electric city bus 
considering real-time passenger load prediction. J. 
Energy Storage 2022; 45, 103749. 
[2] Li, K., Zhou, J., Jia, C., Yi, F., & Zhang, C. Energy sources 
durability energy management for fuel cell hybrid 
electric bus based on deep reinforcement learning 
considering future terrain information. Int J Hydrogen 
Energ 2024; 52, 821-833. 



6 

[3] Lin, X., Zhang, J., & Su, L. A trip distance adaptive real-
time optimal energy management strategy for a plug-in 
hybrid vehicle integrated driving condition prediction. J. 
Energy Storage 2022; 52, 105055. 
[4] Peng, J., Fan, Y., Yin, G., & Jiang, R. Collaborative 
optimization of energy management strategy and 
adaptive cruise control based on deep reinforcement 
learning. IEEE Trans. 2022; 9(1), 34-44. 
[5] Liu, Y., Huang, B., Yang, Y., Lei, Z., Zhang, Y., & Chen, 
Z. Hierarchical speed planning and energy management 
for autonomous plug-in hybrid electric vehicle in vehicle-
following environment. Energy 2022; 260, 125212. 
[6] Wang, J., Du, C., Yan, F., Zhou, Q., & Xu, H. Hierarchical 
rewarding deep deterministic policy gradient strategy for 
energy management of hybrid electric vehicles. IEEE 
Trans. 2023. 
[7] Xue, J., Jiao, X., Yu, D., & Zhang, Y. Predictive 
hierarchical eco-driving control involving speed planning 
and energy management for connected plug-in hybrid 
electric vehicles. Energy 2023; 283, 129058.  
[8] Ganesh, A. H., & Xu, B. A review of reinforcement 
learning based energy management systems for 
electrified powertrains: Progress, challenge, and 
potential solution. RENEW SUST ENERG REV. 2022; 154, 
111833. 
[9] Hoel, C. J., Wolff, K., & Laine, L. (2018, November). 
Automated speed and lane change decision making using 
deep reinforcement learning. In 2018 21st International 
Conference on Intelligent Transportation Systems (ITSC) 
(pp. 2148-2155). 
[10] Ye, F., Cheng, X., Wang, P., Chan, C. Y., & Zhang, J. 
(2020, October). Automated lane change strategy using 
proximal policy optimization-based deep reinforcement 
learning. In 2020 IEEE Intelligent Vehicles Symposium (IV) 
(pp. 1746-1752). 
[11] Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, 
S., & Amodei, D. Deep reinforcement learning from 
human preferences. Adv. Neural Inf. Process. Syst. 2017; 
30. 
[12] Xue, R., Zhao, Y., Wang, Z., Wang, Z., & Zhang, Y. 
(2023, October). Deep reinforcement learning based 
hierarchical eco-driving strategy for a series-parallel 
hybrid electric truck. In 2023 7th CAA International 
Conference on Vehicular Control and Intelligence (CVCI) 
(pp. 1-6). 
[13] Treiber, M., Hennecke, A., & Helbing, D. Congested 
traffic states in empirical observations and microscopic 
simulations. Phys. Rev. E 2000; 62(2), 1805. 
 


