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ABSTRACT

With the continuous promotion of the carbon peak
emissions and carbon neutralization strategies, higher
demands are placed on engine economic performance.
Virtual sensors as an online information collection
technology can be used to control various performance
indicators of engines. Here is an example of ISFC to
represent the engine performance prediction. In this
paper, the feasibility of three machine learning methods,
Artificial Neural Network (ANN), Random Forest (RF), and
Support Vector Regression (SVR), for predicting fuel
consumption applications are explored. Firstly, a
calibrated engine one-dimensional (1D) model is
constructed. Then, the 1D model generates a dataset
with engine load, engine speed and spark time, and
indicative specific fuel consumption (ISFC) as an output,
for the training of machine learning methods. The
performance of different algorithms was compared using
the coefficient of determination (R2), the root-mean-
square error (RMSE), and the mean absolute percentage
error (MAPE) as evaluation metrics. By comparing test
dataset prediction and map prediction, RF has a large
prediction error at boundary operation conditions and
ANN sometimes has a relative error of more than 10%.
SVR performs well in each statistical index and map
prediction, and therefore it is an algorithm that can be
used by virtual sensors.

Keywords: carbon peak  emissions; carbon
neutralization; virtual sensor; machine learning methods

NONMENCLATURE
Abbreviations
ABDC After the bottom dead center
ANN Artificial Neural Network
ATDC After the top dead center
BBDC Before the bottom dead center
BTDC Before the top dead center
CAD Crank angle degree
ISFC Indicated Specific Fuel Consumption
MAPE The mean absolute percentage error
ML Machine learning
OBD On Board Diagnostics
RF Random Forest
RMSE The root-mean-square error
R? The coefficient of determination
SVR Support Vector Regression
1D One-dimensional

1. INTRODUCTION

In the current global context of carbon peak
emissions and carbon neutralization, research to
improve the energy efficiency of engines is receiving
increasing attention [1]. The need to improve the
performance of electronic control systems for better
control of engines implies an increasing number and
accuracy of sensors. Virtual sensors are used to replace
traditional measurement instruments and devices using
existing computers with specially designed modular
hardware combined with efficient and flexible software
and corresponding algorithms [2]. With the dramatic
increase in the amount of data and the continuous
development of machine learning methods, many



researchers have carried out the development of virtual
sensors based on machine learning methods [3]. Unlike
the traditional physical model-based inspection
methods, the data-driven performance metrics
inspection methods based on machine learning methods
are based on real-time measurement data from on-
board OBD (On Board Diagnostics) devices. The objective
is to explore and establish mapping relationships
between individual vehicle operating condition data and
desired performance metrics, and then use the data to
calibrate the model [3]. In the current research of virtual
sensor algorithms, the ANN model was used for NO [4],
HC, CO,, and CO [5] emissions detection to control
engine emissions. Fuel consumption rate is an important
indicator of engine economy. In the actual driving
environment, the factors affecting vehicle fuel
consumption are complex, such as vehicle driving
environment, vehicle characteristics, driver behavior,
road structure, traffic conditions, etc. The impact is
mainly reflected in the real-time operating status data of
the vehicle [6]. By constructing fuel consumption models
through regression analysis methods in machine learning
methods, it is possible to describe their physical meaning
without the need for accuracy. This paper discusses the
accuracy and applicability of three machine learning
methods commonly used for engine performance
prediction, namely ANN, SVR, and RF [7]. The
expectation is to find methods to accurately establish the
relationship between state parameters and vehicle fuel
consumption rate. The overall design of the virtual
sensor for fuel consumption rate prediction can be seen
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Fig. 1. The overall design of the virtual sensor.

2. METHODOLOGY
2.1 Engine setup

In this research, a single-cylinder 500cc naturally
aspirated Sl gasoline engine was chosen to construct a
1D GT-Power model. The stroke and bore of the engine
are 86.07mm and 86mm, respectively. The compression
ratio is 9.5, and connecting rod length is 175 mm. The
valve phasing and other important parameters can be
seen in Table. 1. The numerical model was calibrated by
the reference [8]. In this paper, “EngCylCombSITurb” was
selected to predict turbulent combustion, which can be
used to obtain SI engine performance. To obtain the
inputs data set for the ML method, three kinds of engine
input parameters were chosen engine speed, load
(controlled by the intake pressure), and spark timing, as
shown in Table 2. The engine speed was set to 1000 to
3800 RPM with an interval of 400 RPM. Intake pressure
was set from 0.5 to 1 bar with an interval of 0.1 bar. Spark
Timing was set to -40 to 0 CAD ATDC with an interval of
4 CAD.

Table 1. Engine specifications.

Single-cylinder 4-stroke
Sl gasoline engine
Port fuel injection

86.07 mm X 86 mm

Engine type

Injection method
Stroke X Bore

Intake valve open 9 CAD BTDC
Intake valve close 84 CAD ABDC
Exhaust valve open 55 CAD BBDC
Exhaust valve close 38 CAD ATDC
Compression ratio 9.5
Connecting rod length 175 mm
Table 2. Engine input parameters set.
Title Range Step
Engine speed 1000~3800 RPM 400 RPM
Intake pressure 0.5~1 bar 0.1 bar
Spark timing -40~0 CAD ATDC 4 CAD

2.2 Machine learning method

2.2.1 ANN method

ANN, designed based on the structure of the human
brain information processing system, is a machine
learning model consisting of multiple layers of connected
neurons. The structure of an ANN model consists of a
combination of input, output, and hidden layers. The
different layers are connected by neurons or nodes. The
ANN model is constructed in a training stage and a
validation stage. The input and output layers are derived
from the system model, and the hidden layers can
process the input data during the training stage. By
adjusting the connection weights between neurons, the
ANN model can predict the output results with the
smallest possible error with the system model during the



validation stage. the ANN model structure in this paper
is “3-8-1".
2.2.2 SVR method

SVR is a model derived from SVM, which has a
structure similar to ANN. The structure of SVR has an
input layer, hidden layer, and output layer. By learning
the training dataset of the input layer, the parameters of
the hidden layer can be obtained automatically. By using
the kernel function in SVR model, feature vectors of
sample data can be mapped from low to high
dimensions. Then, the hyperplane which brings all the
data of a set to the closest distance to the plane can be
found. In this research, RBF (Radial basis function) was
chosen as the kernel function.

2.2.3 RF model

Random Forest is an idea based on ensemble
learning. RF uses a bootstrap redrawing technique to
randomly select n samples from the original training set
with back, thus forming a new training subset, and
randomly selecting m (m<M) features. and then, select
the best features from M features as the basis for
decision tree splitting, repeatedly, until N decision trees
are obtained, and the set of these trees is the final
training model. The random forest combines each
decision tree, and the modeling of each tree depends on
the samples extracted independently each time. The
prediction of the classification error depends on the
classification ability of each decision tree and the
correlation between each tree. The number of the
decision tree is 500.

2.3 Data process

To evaluate the performance of the ML method, the
training datasets (80%, i.e., 422) and validation datasets
(20%, i.e., 106) were divided from all the 528 1D
simulation experimental data. To establish the machine
learning models used to predict ISFC, steady-state data
sets were collected. At 1 bar intake pressure, ISFC
prediction under different spark timings with certain
speeds (i.e., 1000, 2600, and 3800 RPM) was analyzed.
Additionally, at -20 CAD ATDC spark timing, ISFC under
different speeds with certain loads (i.e., 0.6, 0.8, and 1.0
bar) was analyzed. Besides, at 2600 RPM, combustion
phasing prediction under different loads with certain
spark timings (i.e., -40, -20, and 0 CAD ATDC) was
analyzed. Besides, some statistical metrics such as the
coefficient of determination (R? or R-squared), the root-
mean-square error (RMSE), and the mean absolute
percentage error (MAPE) evaluated the modeling
performance in the following section.

3. RESULT AND DISCUSSION

3.1 Comparisons of ISFC prediction
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Fig. 3 Comparison of ISFC prediction ability for ANN, SVR and RF model
generalization ability of ANN. The prediction

Fig. 2 and Fig. 3 show the comparison between the
measured ISFC data and different machine learning
predicted results, and the distribution of error is also
given. For the training dataset, the R? of ANN, SVR, and
RF were 0.9878, 0.9995, and 0.9636. The RMSE of these
models were 4.1291, 0.8217, and 8.7297. As for the
validation dataset, the R? of ANN, SVR, and RF were
0.9888, 0.9978, and 0.9466. The RMSE of these models
were 3.1888, 1.4045, and 10.0245. For all datasets, the
RZ of ANN, SVR, and RF were 0.9878, 0.9992, and 0.9604.
The RMSE of these models were 3.9582, 0.9673, and
9.7784. SVR predicted ISFC accurately the R? for both the
training and test dataset were all very close to 1. As for
the ANN model, the R? of the validation dataset is better
than the training dataset, indicating the great

performance of RF is a little poorer because many points
predicted by RF are away from the line slope = 1,
especially when the spark timing is too early. As for the
MAPE, SVR shows the best performance, which is below
0.5%; the MAPE of ANN is around 1%; the MAPE of RF is
above 2%, showing the worst prediction performance. It
can be seen that the prediction errors of ANN were
mainly concentrated between -5 and 5, and the
distributions of the training and validation datasets are
similar, while the prediction errors of SVR were
concentrated between -2 and 2, and the error
distribution of the validation dataset was larger, with
some errors reaching 4. It can be seen that the error
distribution of RF is the worst, mainly concentrated
between -10 and 10, with some errors exceeding 10.
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Fig. 4. Effect of engine variables on the ISFC



Therefore, from the perspective of statistical metrics, the
SVR model shows the best performance in fuel
consumption prediction.

3.2 Comparisons of steady-state prediction

To investigate whether these models can learn the
in-cylinder combustion law when operating conditions
change, the following discussions will focus on the
comparison of the test dataset prediction performance.
Fig. 4 shows the effect of engine variables on the ISFC. As
Fig. 4(a), (b), (c) show, the load has an impact on the ML
prediction performance, the prediction error of all ML
methods became larger when the load was 0.5. The fuel
consumption rate was high because of the low
flammable mixture velocity, caused by low intake
pressure. Since such high fuel consumption working
conditions were rare, machine learning was not
effective. Fig. 4(d), (e), (f) show the effect of engine
speed on the ISFC. It can be seen that with the speed
increasing, the fuel consumption gradually decreased
because the heat loss in the cylinder was less, the flame
propagation speed was faster, and the thermal efficiency
was improved. The effect of spark timing on the ISFC can
be seen in Fig. 4(g), (h), and (i). To different engine
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operation conditions at full engine load, there existed a
Most Brake Torque (MBT) spark timing, indicating the
best power performance and efficiency for the engine.
All three machine learning methods can capture the
characteristics of the MBT. When engine speed was 1000
RPM, the MBT for SVR, ANN and RF were -4, -8, and -8
CAD ATDC, respectively, while the actual MBT was -4 CAD
ATDC. When engine speed was 2600 RPM, the MBT for
all models were -12 CAD ATDC, which were the same as
the actual MBT. The MBT for all models were -16, -12,
and -12 CAD ATDC, respectively at 3800 RPM engine
speed, while the actual MBT was -16 CAD ATDC. This
shows that small prediction errors can affect the
machine learning judgment of MBT.

3.3 Comparisons of engine map prediction

To reflect the relationship between ISFC and engine
inputs, the engine map of ISFC is constructed by using the
different machine learning models with the relative
error, as shown in Fig. 5 and Fig. 6. It can be seen in Fig.
5(a), (d), (g), and (j), that at early spark timing and low
engine speed, the fuel consumption rate was very high.
With the spark timing delayed, the ISFC decreased. When
retarded after MBT, ISFC increased slightly. Fig. 5(b), (e),
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Fig. 5. ISFC versus different engine variables combination.



(h), and (k) show when the engine speed and load
increased, the ISFC decreased, the all the ML methods
could learn this trend. Fig. 5(c), (f), (i), and (I) show that
at -40 CAD ATDC spark timing, the ANN and RF model
were not sensitive to the effect of engine load changes
on ISFC. The prediction error also can be seen in Fig. 6(f)
and (i), at the early spark timing, the relative error for
ANN and RF can reach more than 10%. This error shows
the limitation of ANN and RF application for virtual
sensors design algorithm. It can be seen in Fig. 6, RF has
a large relative error while predicting the ISFC at 1000
RPM and -40 CAD ATDC spark timing. Generally, SVR
model predicted well for different operation conditions.
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Fig. 6. Prediction relative error of engine map for
different machine learning models.

4. CONCLUSIONS

ISFC is an indicator for the engine economic
performance, which is increasingly important as carbon
neutrality and carbon peaking strategies are
implemented. The virtual sensor for the next generation
intelligent engine needs high accuracy and a good
generalization ability algorithm for predicting ISFC
precisely. Here is an example of ISFC to represent the
engine performance prediction. In this study, the
prediction performance of ANN, SVR, and RF was
compared. R%(all) of ANN, SVR and RF were 0.9878,
0.9992 and 0.9604. The choice of machine learning
method affects the judgment of MBT, the SVR can be
well aligned with the actual value under various
operating conditions. Meanwhile, the consistently low
relative error of SVR in map prediction reflects its
potential to predict ISFC well in the virtual sensor for
different operating conditions. The approach paves the

way for using ML as a virtual sensor for fuel consumption
prediction and control. Future work will simplify the
modeling approach and improve the training speed.
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