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ABSTRACT 
 The widespread adoption of distributed photovoltaic 
(PV) systems highlights the need for sophisticated 
segmentation technologies that can accurately identify 
PV panels, essential for calculating potential capacity and 
informing development strategies. Although artificial 
intelligence has significantly advanced the accuracy and 
reliability of PV panel segmentation, real-world 
complexities such as diverse panel types, installation 
methods, and varied backgrounds pose challenges to 
model adaptability and generalization. This research 
introduces a method that enhances PV panel 
segmentation by employing the enhanced Segment 
Anything Model, which has been extensively pre-trained 
using a comprehensive real-world dataset to incorporate 
multimodal semantic information, thus improving 
generalization. Additionally, a fine-tuning process has 
been integrated to better absorb critical features from 
the training data, increasing the model's sensitivity to the 
unique characteristics of specific PV installations. Field 
tests in Heilbronn, Germany, confirm the method's 
superior performance and flexibility, underscoring its 
potential to support strategic planning for large-scale PV 
deployment. 
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Abbreviations 
PV Photovoltaic 
SAM Segment Anything Model 
CNN Convolutional Neural Networks 
RPN Region Proposal Network 
BCE Binary Cross Entropy 

1. INTRODUCTION

1.1 Background

The rapid development of solar energy systems has 
highlighted the urgent need for advanced image 
segmentation techniques. These systems are critical to 
the development of sustainable energy and require 
meticulous modeling to accurately assess potential 
energy capacity and assist in strategic planning. Despite 
significant progress in artificial intelligence models, the 
practical implementation of accurately segmenting 
photovoltaic panels still faces difficulties in adjusting and 
generalizing models. Given the wide range of types and 
sizes of solar panels, different installation methods, and 
complex backgrounds, the use of deep learning models 
has become an important choice for effectively 
managing these complex features. 

In the realm of PV panel analysis, existing studies 
have endeavored to enhance segmentation outcomes by 
modifying traditional deep-learning architectures. For 
instance, models such as U-Net [1], SegNet [2], and 
DeepLab v3+ [3] have been adapted to incorporate 
specific spectral and textural features. While these 
modifications yield commendable performance under 
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certain conditions, they generally lack the adaptability 
required to handle the unique geometric shapes and 
complex installation environments of PV panels. 
Moreover, these models typically rely on extensive 
labeled data and struggle to cope with the challenges 
posed by the diversity in PV panels.  

SAM (Segment Anything Model) [4] is an image 
segmentation model. It contains a powerful image 
encoder, a versatile hint encoder, and an efficient mask 
decoder. The model can accept a variety of input hints, 
including foreground/background points, approximate 
boxes or masks, free-form text, etc. It then generates 
accurate segmentation masks based on these hints. The 
model's approach can be trained without the need for 
specific project labels, enabling seamless transfer to new 
segmentation tasks using hint engineering without 
additional training. 

Given the notable transferability and dataset 
independence of the SAM, we considered employing the 
SAM framework for our study. However, when directly 
applied to PV panel image segmentation, the SAM model 
faces limitations due to a lack of relevant pre-trained 
data and semantic labels, which means insufficient 
adjustments and optimizations for specific and complex 
image contents. As shown in Figure 1, even with the use 
of bounding points(a) and boxes(b) prompts, the model 
fails to correctly identify PV panels. 

a. Points prompt       b. Boxes prompt
Fig. 1 Using SAM to segment PV panels 

1.2  Literature Review 

Currently, academics have observed the potential of 
SAM in the domain of remote sensing picture 
segmentation and researched it. This section will 
examine studies that are closely relevant to this study. 
These studies demonstrate how to utilize and enhance 
the SAM model to enhance the accuracy of segmenting 
specific cases. 

In 2023, Chen et al. introduced RSPrompter [5], a 
method leveraging prompt learning within the SAM 
framework to produce semantically distinct 
segmentations in complex remote sensing images, even 

under challenging conditions with unclear boundaries. 
Following this, Sultan et al. developed GeoSAM [6], 
which fine-tunes SAM using both sparse and dense visual 
prompts to optimize segmentation for automated 
mobility infrastructure in urban environments, 
demonstrating the model's adaptability to varied urban 
scenes. Additionally, in 2024, Zhang et al. proposed 
RSAM-Seg [7], an adaptation of SAM that incorporates 
prior knowledge and internal structural modifications, 
such as adapter modules in the encoder, to improve 
recognition of specific features in remote sensing data. 
These enhancements not only demonstrate SAM's broad 
applicational potential but also highlight the importance 
of tailored adjustments and optimizations to meet the 
specific demands of diverse segmentation tasks, 
underscoring the need for deeper model understanding 
and improvement to achieve superior segmentation 
performance. 

1.3  Motivations and Contributions 

This study is motivated by the need to address 
adaptability and accuracy issues encountered by the 
SAM in photovoltaic PV panel segmentation tasks. By 
freezing the encoder to stabilize feature extraction, and 
enhancing the structure of the decoder and prompter, 
this research aims to improve the model's ability to adapt 
to and accurately segment the unique attributes of PV 
panels. Additionally, the study explores fine-tuning the 
model using high-quality annotated data to enhance its 
performance and generalization capabilities in specific 
applications. The development of this approach not only 
aims to increase the precision of PV panel segmentation 
but also to optimize the underlying structure of the large 
model, quickly adapt to new downstream tasks through 
zero-shot or few-shot learning, and improve 
generalization capabilities.  

2. MATERIAL AND METHODS

2.1  Datasets

In this study, we used the Heilbronn Rooftop PV 
System Dataset (H-RPVS Dataset) to train and evaluate 
our PV panel segmentation models 

H-RPVS Dataset is a public dataset for small-scale
rooftop PV system segmentation. This dataset includes 
5866 pairs of PV panel sample images from Heilbronn, 
Germany, each consisting of a 256×256-pixel image and 
its corresponding label. The samples are collected via 
Google Earth with a spatial resolution of 0.15 meters. We 
gratefully acknowledge the contributions of Wang et al. 
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[8] for developing this valuable dataset and related 
experimental results. 

2.2   Model Structure 

This study presents an improved architecture for the 
SAM to enhance segmentation accuracy and model 
generalization capabilities. Figure 2 illustrates the overall 
framework of the proposed model. 

 
Fig. 2 Model Structure  

Initially, the input image is processed by the Image 
Encoder to extract multi-scale features and provide rich 
contextual information. This encoder is based on the pre-
trained SAM, utilizing deep CNN [9]. During training, the 
parameters of the Image Encoder are kept frozen to 
ensure stable feature extraction and prevent noise from 
fine-tuning. 

Based on the contributions of Chen et al. [5], we 
designed an advanced Prompter adapted to the task of 
PV panel segmentation. The extracted features are then 
fed into this advanced Prompter, which generates task-
specific prompt information, including category and 
location hints. The Prompter uses a Region Proposal 
Network and RoI Pooling [10] for feature extraction, and 
a self-attention mechanism to emphasize important 
features. Classification and regression operations are 
subsequently performed to determine the object's 
category and position. The enhanced features are then 
used to generate prompt embeddings for the Mask 
Decoder through the Prompt Head. 

These prompt embeddings, combined with the 
image features, are input into the Mask Decoder. The 
Mask Decoder, structured around a CNN, decodes the 
prompt information and combines it with the image 

features to generate the final segmentation mask. This 
process captures fine details within the image to improve 
segmentation accuracy. The entire training process 
involves joint optimization of the Prompter and Mask 
Decoder to minimize segmentation errors and enhance 
segmentation quality, thus improving segmentation 
accuracy and model generalization across various image 
scenes. 

By freezing the Image Encoder and enhancing the 
Prompter and Mask Decoder, the proposed model 
adapts better to complex backgrounds, improving the 
precision of PV panel segmentation. This method 
provides reliable data support for monitoring and 
assessing photovoltaic systems, achieving high-precision 
segmentation through the coordinated operation of 
each module as shown in Figure 2. 

2.3  Advanced Prompter Design 

As shown in Fig. 3, we have implemented several key 
design changes to the advanced prompter to enhance its 
performance for PV panel segmentation: an RPN [10] 
module after feature extraction to generate candidate 
bounding boxes, allowing the model to focus on key 
regions and improving segmentation accuracy; RoI 
Pooling [10] to process these bounding boxes into fixed-
size feature maps, reducing computational complexity 
and ensuring consistent processing; a self-attention 
mechanism post-feature extraction to capture global 
information, highlight important features, and suppress 
irrelevant ones, thus improving feature representation 
quality; classification and regression heads for category 
prediction and fine-tuning bounding box positions, 
increasing prompt accuracy; and a prompt head that 

 
Fig. 3 Prompter Structure 
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generates prompt embeddings combining spatial and 
semantic information, effectively guiding the mask 
decoder to produce high-quality segmentation masks.  

The mathematical formulation of our advanced 
prompt generator is as follows:  

𝐹 =  Encoder (𝐼)
𝐵 = RPN	(𝐹)
𝐹pool = RoI	  Pooling (𝐹, 𝐵)
𝐹attn =  Self − Attention	4𝐹pool 5
 Class pred =  Classification Head (𝐹attn )
 Reg pred = Regression Head 	(𝐹attn )
 Prompt embed =  Prompt Head (𝐹attn )

										(1) 

This formulation describes the process where the 
input image 𝐼 is first processed by an encoder to extract 
features 𝐹 . These features are then processed by an 
RPN to generate candidate bounding boxes 𝐵 . The 
bounding boxes are pooled using Rol Pooling to obtain 
fixed-size feature maps 𝐹pool .  A self-attention 
mechanism is then applied to these pooled features, 
resulting in 𝐹attn . The enhanced features are then 
passed through a classification head and a regression 
head to predict categories and adjust positions, 
respectively. Finally, the prompt head generates a 
prompt segmentation task. 

By integrating these improvements, our proposed 
model significantly enhances segmentation accuracy and 
robustness in complex and diverse scenes compared to 
the original SAM. 

2.4 Loss Function 

The design of the loss function is critical in the new 
structure. We constructed a complete loss function that 
incorporates classification loss, regression loss, region 
proposal network (RPN) loss, and mask loss to ensure the 
high accuracy of the model in the photovoltaic panel 
segmentation task. 
2.4.1 Prompter Loss 

The combined loss for the RPN and the prompt 
generator is defined as follows: 

ℒPrompter =
!
"
∑  "
#$! ℒ%&'# + !

(
∑  (
)$! 4ℒcls 

) + ℒreg 
) 5  (2) 

where 𝑀  represents the number of candidate 
bounding boxes, 𝑁  represents the number of 
classification and regression targets, ℒrpn 

#  is the RPN 
loss for the 𝑖-th candidate box, ℒcls 

)  is the classification 
loss, andℒreg 

)   is the regression loss. 

2.4.2 Decoder Loss 

To better solve the problem of data imbalance and 
complex background in the photovoltaic panel 
segmentation task, we use the Dice loss function to 
calculate the mask error. The Dice loss function is chosen 
because photovoltaic panels usually occupy only a small 
part of the image, while the background occupies most 
of the pixels. The traditional BCE loss is affected by this 
imbalance, causing the model to focus more on learning 
background pixels and ignore photovoltaic panel pixels. 
Dice loss effectively alleviates this problem by directly 
optimizing the overlap between the predicted and 
ground truth masks. 

ℒMask = 1 − *∑  !
"#$  -"-̂"

∑  !
"#$  -"/∑  !

"#$  -̂"
            (3) 

2.4.3 Overall Loss Function 

To integrate the promoter and mask losses, we introduce 
weighting parameters 𝛼  and 𝛽  to to balance the 
contributions of each loss component. The overall loss 
function is defined as follows: 

ℒtotal = 𝛼ℒPrompter + 𝛽ℒMask 																			(4) 

3. RESULT 
In this study, we performed an exhaustive evaluation 

of the proposed SAM optimization using the H-RPVS 
Dataset and compared it with several widely used deep 
learning models [8]. Through these evaluations, we were 
able to validate the performance of the optimized SAM 
on the PV panel segmentation task. 

3.1  Evaluation Metrics 

To evaluate the performance of the model, we used 
the following indicators and gave the corresponding 
formulas: 
3.1.1 Precision  

Precision indicates the proportion of positive 
samples predicted by the model that are actually positive 
samples. The formula is: 

Precision = 01
01/21

																															(5) 

Where, 𝑇𝑃 is a true positive sample, 𝐹𝑃 is a false 
positive sample. 
3.1.2 Recall rate 
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Recall indicates the proportion of positive samples 
correctly predicted by the model to be positive samples. 
The formula is: 

 Recall = 01
01/2(

																																				(6) 

Where, 𝐹𝑁 is a false negative sample. 
3.1.3 F1-Score 

F1-Score is the harmonic mean of precision and 
recall, which is used to evaluate the performance of the 
model comprehensively. The formula is: 

 F1-Score = 2 ⋅  Precision ⋅ Recall 
 Precision / Recall 

																					(7) 
3.1.4 IoU (Intersection over Union) 

IoU is used to measure the overlap between the 
predicted segmentation mask and the true mask. The 
formula is: 

IoU =  Area of Overlap 
 Area of Union 

																																	(8) 

The specific calculation is:  

IoU = 01
01/21/2(

																																			(9) 

3.2  Model Performance Comparison 

We compared the proposed method with some 
widely used deep learning models [8], and the results are 
shown in the table: 

Model Precision Recall F1-
Score IoU 

U-Net 0.8966 0.9028 0.8997 0.8176 

Deeplab 
v3+  0.9031 0.9386 0.9205 0.8527 

U-
Net++ 0.9566 0.9561 0.9564 0.9164 

Our 
method 0.9642 0.9592 0.9617 0.9262 

Table 1. Comparison with some widely used Deep 
Learning Model 

As can be seen from the table, our method 
outperforms other models in terms of precision, recall, 
F1 score, and IoU indicators, especially in the IoU 
indicator, our method reaches 0.9262, showing superior 
performance in the photovoltaic panel segmentation 
task. 

4. DISCUSSION 
To enhance the performance and versatility of the 

enhanced SAM structure, we want to implement the 

following enhancements and optimizations: Initially, we 
will execute ablation experiments to validate the impact 
of each enhanced module on the overall performance of 
the model. This will allow us to identify the most crucial 
components for enhancing performance and optimize 
them more efficiently. Furthermore, our objective is to 
incorporate multi-modal and multi-scale information 
input. By combining data from several modalities, such 
as optical images and radar data, we can enhance the 
model's performance in diverse settings. Furthermore, 
the utilization of various scales in processing information 
will enhance the ability to accurately delineate the 
distinctive features of solar panels across different levels 
of detail. Furthermore, we will investigate methods to 
streamline the model architecture or employ less 
resource-intensive models to minimize computational 
burden and enhance the model's applicability in real-
world situations. Ultimately, our intention is to conduct 
extensive testing and implement the enhanced SAM 
framework over a wider range of geographical areas and 
varied settings. Through the examination of photovoltaic 
systems in various geographic locations, we can confirm 
the worldwide suitability of the model and make 
necessary modifications based on the distinct attributes 
of each area. By implementing these enhancements and 
optimizations, we are confident that the enhanced SAM 
structure will deliver outstanding performance in the 
task of segmenting photovoltaic panels. This will greatly 
contribute to research and application in related 
industries 

5. CONCLUSIONS 
This study proposes a high-precision PV panel 

segmentation method that combines large-scale model 
prior knowledge and multimodal information, achieving 
accurate identification and segmentation of photovoltaic 
panels through the optimization of the SAM. By pre-
training on a comprehensive real-world dataset 
containing multimodal semantic information, the 
model's generalization capability is enhanced. 
Additionally, a fine-tuning process is integrated to better 
absorb critical features from the training data, increasing 
the model's sensitivity to specific photovoltaic 
installation characteristics. Field tests in Heilbronn, 
Germany, demonstrate the method's superior 
performance and flexibility. Compared to other deep 
learning models, our method excels in precision, recall, 
F1 score, and IoU metrics, achieving an IoU score of 
0.9262, significantly enhancing the accuracy and 
generalization of photovoltaic panel segmentation tasks.  
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Our study results indicate that leveraging and 
optimizing the SAM model shows excellent performance 
and significant potential in the field of PV panel 
segmentation. 
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