Abstract
To catch up with the sustainability transition progress, the global capacity of PV system is predicted to grow dramatically in the following decades, including high-latitude regions. To effectively use the urban space resource for PV power generation in the high-latitude areas, wall-mounted PV system is becoming an attractive solution. This paper evaluates the potential of wall-mounted PV system in the high-latitude areas with a case study in Swedish contexts through a PV power generation model by considering weather conditions (including snowfall, icing and melting), orientation, and economics. The key performances are compared with rooftop fixed-tilt angle PV systems in Swedish contexts. Although the annual power generation of the wall-mounted PV system is around 5% lower under heavy snow conditions, its power generation during the snow season (from October to April) increases significantly. In general, the power generation in March almost doubled and the increase could be more than 25% in April. Therefore, wall-mounted PV system can contribute to the winter electricity supply in high-latitude areas, when the electricity price is high.
Keywords Wall-mounted PV, High-latitude areas, Techno-economic analysis, Snow conditions
Copyright ©
Energy Proceedings