Abstract
Emerging technologies of Industry 4.0 have introduced novel ways of perceiving maintenance management, which has developed from being perceived as a “necessary evil” to become proactive with a holistic focusing on entire systems rather than single machines from Maintenance 3.0. In this context, the industry has begun to really appreciate the unique opportunities followed by system dynamics and simulation tools capabilities of representing the real world. However, maintenance management and performance are complex aspects of asset’s operation that is difficult to justify because of its multiple inherent trade-offs. Although the majority are unanimous when it comes to the expected impact maintenance plays on company profitability, this is in most cases challenging to determine and quantify. Moreover, relevant literature is considered as limited, especially with regards to impact simulation of Maintenance 4.0. Therefore, this paper focuses on the supportive function system dynamics, and modeling and simulation tools can be of help to assess behavior and predicting the future outcome of Maintenance 4.0 in the era of Industry 4.0. This includes developing a conceptualized model that enables simulating the future expected behavior i.e. (un)availability and cost by implementing such maintenance system. In this context, a centrifugal compressor with the function of exporting gas to Europe is applied as a case study.
Keywords Industry 4.0 Architecture, System Dynamics, Maintenance Management, Impact Simulation
Copyright ©
Energy Proceedings