Abstract
To reduce heavy reliance on greenhouse gas-emitting power plants, various countries have focused on the development of renewable energy technology with the appropriate energy storage installed. Pumped hydropower energy storage (PHES) technology has been utilized for several decades for electrical ancillary benefits (e.g. spinning reserve) or linked to renewable energy sources to store excessive power and exploit it, if needed. However, several factors in hybrid renewable energy systems have been given less attention, such as hydraulic loss influences and evaporation rate, which are extremely essential parameters where a noncontinuous water sources (closed loop power plants) is used. Consequently, this study aims to investigate the impact of those factors against integration systems comprising of a photovoltaic energy system and pumped storage connected to the grid. A mathematical model is developed taking into account various monitoring variables: loss of renewable energy, amount of electricity supplied by grid, and load covered by renewable sources. It is clearly observed that hourly evaporation rate and hydraulic losses may affect the whole hybrid system performance if they are neglected. The results show that more than 10 mm of water evaporated on the first of August in Bisha, located in Saudi Arabia, which is adapted as a case study .Based on the obtained results, it is recommended that considering both essential parameters increases the accuracy of such system and raises reliability of hybrid renewable energy sources.
Keywords renewable/green energy resources, advanced energy technologies, energy systems for power generation, environment and climate change
Copyright ©
Energy Proceedings