Abstract
Microchannel heat sink is one of the most promising cooling solutions for electronics with high heat flux. In order to further enhance the heat transfer performance of microchannel heat sink, a novel microchannel with rectangular grooves on the wall is designed, and the heat transfer and flow characteristics of Al2O3/water nanofluid in microchannels are numerically studied. The mixture model is used involving the slip velocity between nanoparticles and base fluid. By comparing with the conventional smooth channel, it’s found that grooves are helpful to destroy and redevelop the thermal boundary layer. The disturbance by grooves also leads to much higher pressure drop through the channel than smooth one. This work will be helpful for the design of high-performance microchannel heat sink.
Keywords microchannel, rectangular groove, nanofluid, heat transfer, flow
Copyright ©
Energy Proceedings