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ABSTRACT

Based on the uncertainty surrounding the temporal
correlation of wind power forecast error, an energy
storage system (ESS) is applied to both a peak shaving
mode and a plan following mode, and a multimode
optimization model for a wind-storage integrated
system is proposed. Considering the large-scale mixed
integer programming (MIP) problem, a peak shaving
coefficient of ESS capacity and a two-layer optimization
algorithm is proposed. Thus, the problem can be solved
iteratively, and capacity allocation can be evaluated in
different modes. The simulation results show that pool
purchase price, penalty price and the stochastic
characteristics of wind power influence the optimal
operation of a wind-storage integrated system. The
proposed model can realize reasonable allocation and
efficient utilization of limited ESS capacity.

Keywords: wind-power integrated system, temporal
correlation of wind power, multimode coordination,
peak shaving coefficient, sensitivity analysis

1. INTRODUCTION

Recently, the rapid development of renewable
energy sources (RESs) has attracted extensive attention
all over the world. By the end of 2017, the installed
capacity of wind had reached 165 GW in China, ranking
first in the world [1]. However, the power output of
wind is stochastic, and the security and stability of the
power system are greatly challenged by the integration
of large-scale variable wind power.

With advantages such as rapid adjustability ability,
high energy density and flexible configuration, energy
storage systems (ESS) have been commercially
implemented in many fields [2]. ESS can compensate for

the fluctuation of wind generation to improve power
guality and enhance the economy and safety of whole
grids. Thus, a wind-storage hybrid system can play an
important role in the utilization of volatile wind energy
sources.

The optimal operation strategy for wind-storage
integrated systems has become a research focus due to
their stable power supply and increased operational
efficiency. In [3], a detailed model of a battery ESS was
established to maximize selling revenue. In [4], an ESS
was used for peak shaving in the day-ahead market and
for plan following in real-time scheduling. In [5],
multiple scenarios were used to describe uncertain
wind power generation. In consideration of various
constraints, such as the frequent charge and discharge
of the battery, the optimization model was built to
maximize the expectation of the selling revenue and
minimize the penalty cost of wind curtailment. In [6],
the factors used to determine ESS parameters were
discussed on the planning level, which could inform the
future planning and construction of ESS.

The existing research has three main shortcomings:
(1) The lack of consideration of the temporal
correlations of wind power. (2) The lack of fast and
effective solutions for the optimal operation of wind-
storage integrated systems with high-dimensional and
stochastic features. (3) The lack of guidelines to
determine the optimal operation mode of wind-storage
integrated systems.

Given the current state of the research, a
multidimensional Gaussian distribution is first used to
model the wind power forecast error by considering its
temporal correlation. Then, a multimode optimization
model for a wind-power integrated system is proposed,
which comprehensively considers the coordination
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between the two ESS application modes of peak shaving
and plan following. The peak shaving coefficient of ESS
capacity is proposed to evaluate the ESS capacity
allocation in different modes, and a two-layer
optimization algorithm based on the coefficient is
further proposed to solve the model quickly. Finally, the
performance of the proposed model is demonstrated
based on the actual data, and the influence of price
factor and wind power stochastic characteristics on the
optimal operational mode of the ESS are analyzed,
which provides an important point of reference for the
optimal operation of a wind-storage system.

2. A MULTIMODE OPTIMIZATION MODEL FOR A
WIND-STORAGE INTEGRATED SYSTEM

2.1 Wind power uncertainty model considering
temporal correlation

Due to the stochastic nature of wind power, the
integrated operation of wind-storage is a stochastic
programming problem. This problem mainly involves
short-term uncertainty, which is generally described by
the probability distribution of the wind power forecast
error. However, the optimal operation for an ESS is a
multistage decision problem, so the state of charge
(SOC) of an ESS is closely related to the magnitude and
sequence of wind power fluctuations. Therefore, the
uncertainty model of wind power needs to consider not
only the edge distribution of the error but also its
temporal correlation. In this paper, a probability
measure transformation [7] method is wused to
transform the wind power forecast errors at each time
point into a Gaussian distribution sequence. Then, a
multidimensional Gaussian distribution is used to model
the temporal correlation of the errors at each time
point. Based on the uncertainty model, wind power
fluctuation scenarios can be generated by sampling.

2.2 A multimode optimization model for a wind-
storage system

The main applications of an ESS are peak shaving
and plan following. The peak shaving mode aims to
maximizing selling revenue. According to the price
difference between the peak period and the valley
period, the wind power at the valley period is shifted to
the peak period by the ESS to provide peak shaving
service for the power grid. The plan following mode
aims to minimize the penalty price. By controlling an
ESS, the deviation between the combined outputs of a
wind-storage system and the day-ahead generation
plan is reduced, which improves the controllability and

reliability of wind power and reduces the reserve
demand of the power grid. Due to stochastic factors
such as wind power, the power and capacity of an ESS
in a single application mode may be surplus and not
fully utilized. Therefore, this paper applies the ESS to
both modes at the same time.

The objective function is the expectation of selling
revenue, penalty price and storage cycle cost of a wind-
storage system in different wind power scenarios, as
shown in equation (1):
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where o represents the wind power scenario and N
is the number of scenarios. t is the time period. T is the
length of the optimal period. mi; is the pool purchase
price of the wind-storage system. P, is the wind

power. P? and P; are the charge /discharge power

ct
of the storage system. Pun;” is the penalty price for the
wind-storage system’s deviation from the day-ahead
plan. 12 and 1“ are the transformation costs

cdt dct
when the storage system is converted from charge to
discharge or from discharge to charge.

2.2.1  Penalty price constraints

In the paper, the penalty price is expressed in terms
of linear constraints:
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where P; is the day-ahead generation plan submitted by
the wind-storage system. 4P, is the deviation of
wind power from the plan value allowed by the power
grid; ayp,: and agown: are the penalty prices for going
over the upper/lower limit of power output. The
relationship between the penalty price for going over
the upper limit and the pool purchase price shows the
different dispatch principles for wind power.

2.2.2  Cycle price constraints

The cycle cost is divided into two parts, charge to
discharge and discharge to charge. It also utilizes linear
constraints as in equation (2) to avoid absolute value
terms in the model, as shown in equation (3):
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where 7, and 7, are the state transition prices
for converting charge to discharge and converting
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discharge to charge. u? ~and uj, are the

charge/discharge states of the ESS, which are 0-1
variables.

2.2.3  Operation constraints for an ESS

The operation of an ESS also needs to meet the
power and capacity limits and the charge and discharge
state mutual exclusion constraints, as shown in
equation (4):
0<Py <U)P,,

0<PY <u’P
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where  Pimex  and  Pumax are  the  maximum
charge/discharge power values. SOG, is the initial state
of SOC. n. and ng are the charge/discharge efficiencies.
Srate is the rated capacity of the ESS. At is the time
interval. SOCpax and SOCnin are the maximum allowable
charge/discharge depths.

The multimode optimization model for the wind-
storage integrated system is obtained by combining
equations (1)-(4). When the objective function only
contains the first and third terms of equation (1), the
ESS is in peak shaving mode, and its charge/discharge
power is determined only by the price of electricity.
When the objective function only contains the second
and third terms of equation (1), the ESS is in plan
following mode.

2.3 Two-layer optimal solution

The multimode optimization model proposed in 2.2
is a high-dimensional mixed integer linear programming
(MILP) problem. Its scale is related to the number of
wind  power fluctuation scenarios, and the
computational complexity increases exponentially with
scale. Therefore, most references adopt the scenario
reduction method to obtain a set of scenarios for wind
power fluctuation by aggregating similar scenarios and
eliminating low-probability scenarios.

In the multimode optimization model, the day-
ahead generation plan for the wind-storage integrated
system is a pivotal variable that links various wind
power scenarios, and it is the main reason for the
significant increase in computational complexity.
Therefore, the paper decomposes the solution into two
layers. The outer layer is optimized for the day-ahead
generation plan separately, and the inner layer
decouples and optimizes each wind power scenario on

this basis. Through the iteration between the outer
layer and the inner layer, the difficulty of the model can
be greatly reduced. The outer layer model takes peak
shaving revenue as the objective to guide the ESS to
allocate part of its capacity to the peak shaving mode,
as shown in equation (5):

;
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where P4 and P are the day-ahead peak shaving power
values for the wind-storage system. S, and S, are

the squared coefficients of the charge/discharge power,
which can rationally allocate power during the same
electricity price period while maximizing peak shaving
revenue. The constraints include the limit of peak
shaving depth, SOC state constraints and the final value
of SOC—SO0C.

The limit of peak shaving depth in equation (5) is
proportionally corrected based on the maximum
peaking depth Pup in peak shaving mode. r is the peak
shaving coefficient of ESS capacity proposed in the
paper, and 0<r<1. From a physical point of view, r
represents the allocation ratio of the limited capacity of
the ESS in peak shaving and plan following modes.
When r equals 1, the ESS capacity is all used for peak
shaving, and when r equals 0, the ESS capacity is all
used for plan following. The peak shaving coefficient of
the ESS is used to construct a family of proportionally
varying power generation planning curves. In fact, this
approach limits the boundary conditions of the original
problem, and optimization is searched for only on the
constructed surface. As a result, the high-dimensional
MIP problem is decomposed into a one-dimensional
single-peak optimization problem at the outer layer and
a multi-scenario decoupling low—dimensional MIP
problem at the inner layer.

The peak shaving coefficient of ESS capacity links
the optimization models between two layers. A one-
dimensional function optimization method can be used.
The golden section method is used in this paper.

3. SIMULATION VERIFICATION AND SENSITIVITY
ANALYSIS
3.1 Wind power fluctuation scenario modeling

The simulation chooses a forecast and measured
data for a wind farm with an installed capacity of 124

3 Copyright © 2019 ICAE



MW from the wind power integrated database of the
National Renewable Energy Laboratory (NERL) [8]. First,
a nonparametric estimation method [9] is used to
model the edge distribution of the errors for 24 forecast
periods. After measurement transformation, the
temporal correlation of the error is modeled by a
multidimensional Gaussian distribution, and the
covariance matrix for the Gaussian distribution is fitted,
as shown in Figure 1. It can be seen that the closer the
temporal interval is, the higher the correlation of errors,
which is determined by the temporal persistence
characteristics of wind resources.

Covariance Matrix

Time Period (h)

5 10 15 20
Time Period (h)

Fig 1 The covariance matrix for forecast error

Due to the temporal correlation of the forecast
error, there will be situations in which the consecutive
errors will be positive or negative for a period of time,
which will increase the demand for ESS capacity. Figure
2 is the frequency distribution diagram for consecutive
positive/negative forecast error quantity. Obviously, a
model that considers temporal correlation better
reflects the long-tail effect of the distribution and fits
the actual data better.
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Fig 2 Frequency distribution of consecutive error quantity

3.2 Algorithm validation

The wind-storage simulation system consisted of a
124 MW wind farm in 3.1 and an all-vanadium redox
flow battery of 24.8 MW/99.2 MWh (20% of the rated
power of the wind farm and 4 h of the complete
discharge time), and the uncertain set of wind power
data consisted of 100 aggregated wind power
fluctuation scenarios. We assume that the pool

purchase price is the peak-level-valley time-of-use
electricity price and that the price is 0.2 RMB/kWh
during valley time (0:00-7:00), 0.8 RMB/kWh during
peak time (11:00-15:00, 19:00-21:00) and 0.5 RMB/kWh
during level time (8:00-10:00, 16:00-18:00, 22:00-
23:00) . The amount of output deviation from the plan
value allowed by the grid is £5%. The penalty price is set
at 1.1 times the electricity price.

Five simulation scenarios are set: 1) Without an ESS,
the day-ahead generation plan adopts the expectation
of fluctuation scenarios of wind power. 2) The ESS is in
peak shaving mode. 3) The ESS is in plan following
mode. 4) The ESS is in multimode optimization. Then,
100 aggregated wind power scenarios are adopted, and
the solution is based on the two-layer optimal method.
5) The ESS is in multimode optimization. Then, 5
aggregated wind power scenarios are adopted, and the
solution is based on the global optimization. The
expectation values for various economic indicators are
calculated according to 100 aggregated wind power
scenarios. The results are shown in table 1.

Table 1 Profit comparison of five application cases
10 thousand RMB

Selling Penalty Operation Total

Scenarios revenue expectation cost revenue
Scenariol  79.02 20.18 0 58.85
Scenario2  82.69 20.18 1.27 61.48
Scenario 3 77.73 12.41 1.03 64.06
Scenario4  79.86 13.31 1.26 65.29
Scenario5  78.93 13.44 1.26 64.23

In scenario 2, the ESS is only applied in peak shaving
mode: it has maximum selling revenue, but it has the
same penalty price as scenario 1. In scenario 3, the ESS
is only applied in plan following mode: it has the
minimum penalty price, but it also has minimum selling
revenue. In addition, the storage operation cost in
scenario 3 is the lowest, which means that the plan
following mode has fewer cycles. In scenario 4, the ESS
is in multimode optimization, so the value of a single
indicator is between the values for scenario 2 and 3,
while the total revenue is highest. The total revenue in
scenario 5 is smaller than that in scenario 4 because the
plan was optimized for the scenarios after a large
reduction. The accuracy of the optimal solution for the
reduction model is lower than the suboptimal solution
obtained by the proposed two-layer solution method.

3.3 Sensitivity analysis for operation mode

Previous literature has usually analyzed sensitivity
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from a planning perspective. However, in regard to
operational dispatch, stochastic factors, such as pool
purchase price, penalty price and wind power
characteristics, vary seasonally or daily. The optimal
operation mode of the wind- storage system will change
accordingly. The proposed peak shaving coefficient of
ESS capacity can quantitatively analyze the variation law
for the operational strategy of a wind-storage system
with external factors, which gives an important point of
reference for the optimal operation of a wind-storage
system.

3.3.1 The influence of price factors

The optimal operation mode of an ESS is closely
related to price factors. Penalty price reflects the
severity of the gird’s requirement for grid-connected
wind power, while the peak and valley prices reflect
seasonal changes in grid peak shaving demand.

Figure 3 shows the variation in economic indicators
and peak shaving coefficients for different application
modes with penalty factor. With increasing penalty
factor, the selling revenue in a single application mode
is almost unchanged, but penalty price increases
continuously. When the penalty factor is greater than
0.7, the total revenue for plan following mode is greater
than that for peak shaving mode. The peak shaving
coefficient in the multimode optimization is gradually
reduced, indicating that the ESS capacity is gradually
shifted from peak shaving mode to plan following
mode, so its selling revenue is continuously reduced.

Figure 4 shows the variation in the indicators of
different application modes with changes in electricity
price difference between the peak and the valley. With
increasing price difference, selling revenue in a single
application mode also increases, and the penalty price is
almost unchanged. When the difference in electricity
price between the peak and the valley is greater than
700 RMB/MWh, the total revenue of peak shaving
mode is greater than that of plan following mode. In
addition, at that time, the cycle number of peak shaving
mode increases, which means that the total peak
shaving capacity increases. Variation in the total peak
shaving capacity of the ESS and the peak shaving
coefficient is also shown in the figure. When ESS
capacity gradually shifts from plan following mode to
peak shaving mode, the penalty price increases
accordingly.

3.3.2 The influence of wind power characteristics on
ESS operation mode

The peaking and uncertain characteristics of wind
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Fig 3 The variation of economic indicators and peak
shaving coefficients with the penalty factor
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Fig. 4 The variation of economic indicators and peak
shaving coefficient with peak-valley price difference

power are the two main stochastic factors affecting the
economic operation of power grids and are related to
the optimal operational mode of an ESS. Wind power
uncertainty is closely related to the forecast output
level, so the wind power uncertainty is measured by the
expectation of the wind power output forecast. In
addition, the correlation coefficient between the wind
power forecast and pool purchase price is used to
measure the peaking characteristic of wind power.
Figure 8 shows the calculation of the distribution of the
peak shaving coefficient of ESS capacity for a multimode
optimization operation with different wind power
characteristics within a year.

As shown in Figure 5, the peak shaving coefficient of
ESS capacity first decreases and then increases with an
increase in the wind power forecast, which is related to
the change of wind power uncertainty. The greater the
uncertainty of wind power is, the greater the capacity of
the ESS for plan following; thus, the peak shaving
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coefficient is smaller. In addition, the peak shaving
coefficient increases with decrease in the correlation
coefficient of wind power peaking because more
capacity of the ESS is utilized for peak shaving when
wind power has a strong reverse peaking characteristic.
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Fig 5 The relationship between the peak shaving coefficient
of ESS capacity and the characteristics of wind power

Based on the above analysis, the optimal
operational mode for an ESS is not fixed, and the
optimal mode is related to stochastic factors, such as
price and wind power characteristics. The coordinated
optimization model proposed in this paper can better
adapt to the changes in relevant factors and can realize
the rational allocation of the limited capacity of an ESS
in different application modes, thus effectively
improving the utilization efficiency of an ESS.

4. CONCLUSION

Based on an uncertainty model considering the
temporal correlation of the forecast error of wind
power, this paper proposes a multimode optimization
model and a two-layer optimal method for a wind-
storage integrated system. The main conclusions are as
follows: 1) The optimal ESS operation is a multiperiod
optimization problem. A short-term uncertainty model
of wind power should consider the temporal correlation
of the forecast error; otherwise the required ESS
capacity will be underestimated. 2) The two-layer
optimization algorithm proposed decomposes the high-
dimensional MIP problem, which has strong practical
value. 3) The concept of a peak shaving coefficient for
ESS capacity can quantitatively evaluate capacity
allocation of an ESS in peak shaving and plan following
modes, which will help analyze the factors influencing
ESS application mode and provide information to
dispatchers about the plan operation status and the
schedulable capacity of the ESS. 4) The optimal
operation mode of an ESS is related to stochastic
factors, such as price and wind power fluctuation. In
general, a small penalty price, a large peak-valley

electricity price difference, an obvious reverse peaking
characteristic, and relatively large and small power
output forecast will cause a large peak shaving
coefficient.

ACKNOWLEDGEMENT

The authors thank the National Key R&D Program of
China 2017YFB0902200 and Science and Technology
Project of State Grid Corporation of China
5228001700CW.

REFERENCE

[1] Kotzur L, Markewitz P, Robinius M, et al. Time series
aggregation for energy system design: Modeling
seasonal storage[J]. Applied Energy, 2018, 213: 123-
135.

[2] Zhang L, Ye T, Xin Y, et al. Problems and measures
of power grid accommodating large scale wind
power[J]. Proceedings of the CSEE, 2010, 30(25):1-9.
[3]Yuan X, Cheng, Wen J, Prospects analysis of energy
storage application in grid integration of large-scale
wind power[J]] . Automation of Electric Power
Systems, 2013, 37(1): 14-18.4

[4] Ning Z, Tian-Rui Z , Chang-Gang D, et al. Impact of
Large-Scale Wind Farm Connecting With Power Grid on
Peak Load Regulation Demand[J]. Power System
Technology, 2010, 34(1):152-158.

[5] Gill S., Barbour E., Wilson | A G, et al. Maximising
revenue for non-firm distributed wind generation with
energy storage in an active management scheme [J]. IET
Renewable Power Generation, 2013, 7(5): 421-430.6

[6] Dicorato, M., Forte G., Pisani M, Trovato M. Planning
and operating combined wind-storage system in
electricity market [J]. IEEE Transactions on sustainable
energy, 2012, 3(2): 209-217.7

[7] Pinson P., et al. From probabilistic forecasts to
statistical scenarios of short-term wind power
production [J]. Wind Energy, 2009, 12(1):51-62.

[8] Pennock K., Updated Eastern Interconnect Wind
Power Output and Forecasts for ERGIS [EB/OL] Nat.
Renewable Energy Lab., New York, NY, USA, 2012.

Zhao H, Wu Q, Hu S, et al. Review of energy storage
system for wind power integration support[J]. Applied
energy, 2015, 137: 545-553.

[9] Pinson P. Estimation of the Uncertainty in Wind
power Forecasting [D]. Ecole des Mines de Paris, Paris,
France, 2006.

[10] Hemmati R, Shafie-Khah M, Cataldo J P S. Three-
level hybrid energy storage planning under
uncertainty[J]. IEEE  Transactions on Industrial
Electronics, 2019, 66(3): 2174-2184.

6 Copyright © 2019 ICAE



